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Reclaimed asphalt pavement (RAP) is a valuable resource that can be recycled 

into new asphalt mixtures.  In recent years, the continued rise of raw material costs has 

generated considerable interest in increasing RAP usage.  Warm mix asphalt (WMA) is a 

modern development in the asphalt industry that can potentially help increase RAP usage 

and achieve adequate mixture performance.  The purpose of this dissertation is to: 1) 

develop a method to characterize the absorbed, inert and effective bituminous 

components in RAP; and 2) evaluate performance of high RAP-WMA mixtures for 

various pavement applications including airfield surfaces, highway surfaces and highway 

bases. 

A unique approach was taken to characterize RAP properties that coupled a 

dataset of 568 asphalt mix designs spanning five years of practice and testing 100% RAP 

with added virgin binder; 394 compacted specimens and 68 loose specimens were tested.  

A method to predict RAP absorbed asphalt was developed and shown to yield more 

reasonable results than conventional methods which were shown very likely to give 
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incorrect absorbed asphalt contents in some conditions.  The relative effectiveness of 

RAP surface asphalt was evaluated and estimates of inert and effective RAP asphalt were 

made for a variety of temperature, compactive effort, and warm mix additive conditions.  

Results showed different behaviors between RAP sources and between hot and warm mix 

temperatures.  These results were also observed in volumetrics of high RAP mixtures. 

Performance evaluation was based on testing 75 slab specimens and more than 

1100 gyratory specimens.  Test data indicated a potential for decreased durability as RAP 

content increases; however 25% RAP highway surface mixtures and 50% RAP base 

mixtures had similar performance to current practice.  Low temperature mixture stiffness 

testing and thermal cracking analysis indicated slightly increased stiffness with high RAP 

and 25% RAP highway surface mixtures that had comparable performance to current 

practice.  Dry rut testing indicated high RAP mixtures are rut resistant.  Moisture damage 

testing of high RAP mixtures indicated passing results in tensile strength ratio testing but 

potential for moisture damage in loaded wheel tracking.  Overall, 25% RAP highway 

surface mixtures are recommended for immediate implementation. 
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CHAPTER 1 
 

INTRODUCTION 
 
 

1.1 Research Motivation 

Reclaimed asphalt pavement (RAP) is asphalt concrete that has been removed 

from an existing pavement after some un-quantified amount of environmental exposure 

and traffic.  RAP is most commonly obtained by cold milling of pavements as part of 

maintenance and rehabilitation activities.  RAP can be recycled into new mixture by 

heating and mixing with virgin aggregate and asphalt binder.  The recycling process can 

be conducted at conventional hot mix temperatures or at warm mix temperatures. 

There are several reasons to use RAP in new asphalt mixtures, including: 1) cost 

savings from replacement of virgin materials with lower cost reclaimed material; and 2) 

conservation of natural resources through reduced demand for virgin binder and 

aggregate.  The more RAP is utilized in a mixture, the greater the potential advantages.  

On the other hand, there are several potential disadvantages to use of RAP, including: 1) 

stiffening of the composite binder component of the recycled mixture due to contribution 

of stiff RAP asphalt; and 2) difficulty meeting gradation requirements in recycled 

mixtures due to the contribution of RAP aggregate which frequently has high fines 

contents due to aggregate degradation during service and the reclamation process.  In 

addition, the use of RAP in high quantities (greater than 25% of the asphalt mixture) 
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raises other problems such as accurate determination of RAP aggregate properties and 

assessment of RAP asphalt absorption. 

The use of lower mixing and compaction temperatures in warm mix asphalt 

(WMA) is an emerging trend in the asphalt pavement industry.  Various techniques are 

used to temporarily modify the properties of asphalt binder and allow mixture 

temperature reduction; these techniques include wax based binder additives, chemical 

additives such as surfactants, as well as processes and additives designed to increase 

volume of asphalt binder with foam produced by steam.  Potential advantages of lower 

production temperatures associated with warm mix include: 1) reduced cost due to lower 

energy requirements; 2) improvement of long term pavement properties due to reduced 

binder aging; and 3) reduced emissions.  However, there are also some potential 

disadvantages to WMA such as: 1) incomplete drying of aggregates leading to moisture 

susceptibility, and 2) increased propensity for permanent deformation early in the 

pavement service life due to reduced binder aging. 

Use of a combination of high RAP contents and WMA has the potential to 

alleviate some of the individual disadvantages of each component.  For example, the 

reduced binder aging associated with lower production temperatures of warm mix could 

potentially offset some of the increased stiffness associated with high RAP.  Use of warm 

mix could potentially allow greater percentages of RAP to be utilized than are used in 

current practice.  At the same time, it must be ensured that no new problems present 

themselves in warm mixtures containing RAP and that performance of high RAP-WMA 

is adequate for its intended application in a pavement structure. 
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1.2 Scope and Objectives 

For the purposes of this study, high RAP mixtures are defined as 25% or more of 

the total mixture (Copeland 2011).  Warm mix asphalt is defined as asphalt mixed and 

compacted at temperatures lower than conventional hot mix for the given binder grade 

[50 F (28 C) or more reduction in temperature (Bonaquist 2011)].  The focus of this 

dissertation is on characterization of RAP and laboratory properties of high RAP-WMA 

mixtures to evaluate their suitability for different applications and functions in a 

pavement structure. 

Four primary objectives are addressed in this dissertation.  They are:  

1. Characterization of RAP to estimate absorbed and effective asphalt 

components as well as evaluation of 100% RAP mixtures to investigate 

relative performance characteristics of different RAP sources. 

2. Evaluation of high RAP-WMA for airfield surface mixtures.  Performance 

properties evaluated include durability, thermal cracking potential, rutting, 

and moisture susceptibility. 

3. Evaluation of high RAP-WMA for highway surface mixtures.  

Performance properties evaluated include durability, thermal cracking 

potential, rutting, and moisture susceptibility. 

4. Evaluation of high RAP-WMA for highway base mixtures.  Performance 

properties evaluated include durability, cracking potential, rutting, and 

moisture susceptibility. 

The mixtures investigated in this study would be intended for central plant 

recycling; this study does not consider in place or cold recycled mixtures, although many 
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of the same considerations apply.  Furthermore, this study does not consider the plant 

production and economic aspects of high RAP-WMA.  For example, production of high 

RAP mixtures may require fractionation of RAP into multiple stockpiles to ensure 

adequate control of gradation; also, the increased cost per ton associated with warm mix 

additives could potentially be offset by reduced virgin binder costs from using RAP. 

 
 

1.3 Organization of Study 

This dissertation is organized by chapters.  Each chapter begins with an overview 

section which describes what is contained within the individual chapter, and how it is 

organized.  Chapter one contains an introduction, as well as the scope and objectives of 

the study.  Chapter two is a review of literature as well as a discussion of RAP and warm 

mix.  Chapter three describes the materials, sample preparation and properties of mixtures 

tested.  Chapter four describes test methods, and presents the experimental designs 

utilized for this study.  Chapter five presents data analysis and discussion related to the 

first objective of this dissertation.  Chapter six presents data analysis related to the second 

objective.  Chapter seven presents data analysis related to the third objective.  Chapter 

eight presents data analysis related to the fourth objective.  Chapter nine evaluates 

relative compactability of high RAP-WMA.  Chapter ten presents an overall discussion 

of performance of high RAP-WMA, using data from chapters five to nine.  Conclusions 

and recommendations for future work are presented in chapter eleven. 
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CHAPTER 2 
 

LITERATURE REVIEW 
 
 

2.1 Overview of Literature Review 

This chapter provides review of literature organized by topic.  The topics of 

interest during literature review included historical use of RAP, properties of RAP, 

interaction of RAP with virgin binder and aggregates in recycled mixtures, mix design 

methods for high RAP content, test methods of interest to this study, as well as 

performance of mixtures with RAP and warm mix in the laboratory and in the field. 

Al-Qadi et al. (2007) is a recent literature review related to RAP use.  Some 

sources referenced in Al-Qadi et al. (2007) are included in this document, while others 

are not referenced since they provide no additional insight into the objectives of the 

current work.  According to the literature review of Al-Qadi et al. (2007), various 

researchers have investigated the proper methods of utilizing RAP, alongside its 

corresponding performance characteristics, with widely mixed results providing no clear 

conclusions.  In some studies given parameters have been reported superior, while in 

other studies given parameters have been reported inferior. 

 
 

2.2 History of RAP Use 

Recycling and reuse of asphalt paving materials has been practiced for many 

years in the paving industry.  Hot recycling of existing pavements has been practiced 
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since at least the 1930’s and 1940’s (Taylor 1975) and probably earlier.  However 

recycling of asphalt pavements was of limited extent in early years due to the relatively 

low cost of virgin raw materials as well as limited experience and knowledge. 

The oil embargo of the early 1970’s and generally rising costs of raw paving 

materials generated a large interest in recycling of existing pavement.  Central plant hot 

recycling of RAP had been experimented with as early as 1915 (Epps et al. 1980); 

however the first full description of central plant hot recycling that was identified in 

literature was Dunning et al. (1975).  Effective use of RAP necessitated a much better 

understanding of its properties and behavior in recycled mixtures.  As a result of the 

desire to understand RAP more completely, the FHWA initiated Demonstration Project 

No. 39, Hot Recycling of Asphalt Pavement Materials.  Reasoning for the demonstration 

project was stated in the background section: 

The pressing need to conserve energy and minimize costs in highway 
construction requires that special effort be made to identify and make the 
maximum use of procedures that will result in reduced energy usage and 
minimum cost. Because recycling of asphalt pavements has the potential to be 
an effective method of conserving energy and materials and reducing costs, it 
is FHWA's policy that recycled asphalt concrete, defined as asphalt concrete 
containing salvaged paving materials including the use of suitable reclaimed 
material from other projects, be allowed for use on all projects. States with 
insufficient experience to properly evaluate the reuse of these materials 
should take immediate steps to initiate experimental projects. (FHWA 1979). 

 
There was no limit placed on use of softening agents, added asphalt grade, or 

percent of RAP (Epps et al. 1980). Some projects used 100 percent RAP, but it was 

recognized that batch plants were generally limited to 50 to 70 percent RAP. There were 

problems of production, emissions, and achieving consistent mixture properties (Epps et 

al. 1976, Kari et al. 1979, Betenson 1979, Smith 1980, Dunning 1983). 
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A synthesis of highway practice performed in 1978 addressed multiple facets of 

recycling, including central hot mix plants (Copas and Pennock 1978).  During the same 

period, White (1977) studied 100% RAP in the laboratory in conjunction with two soft 

asphalt binders (AC-10-127 pen; AC-5-270 pen) and reported that an addition of 1.75% 

asphalt content was satisfactory in the laboratory for the conditions encountered, and 

noted that the approach taken was only one of the possibilities.  Viscosity modifiers were 

used by Dunning et al. (1975). They were selected to create a target final blend viscosity; 

specimens were compacted by the Marshall method to determine the optimum additional 

asphalt content.  Based on the results, addition of up to 1.5% AR-8000 asphalt binder to 

recycled pavement was recommended. 

Problems observed during the late 1970’s to the early 1980’s drastically reduced 

research and implementation of high RAP content mixtures.  Many of the problems 

disappeared with HMA mixtures using lower percentages of RAP, the advent of new 

equipment (drum mixing plants, milling machines, etc), and industry experience.  Into 

present day, HMA mixes with RAP in the 10 to 25 percent range are routinely used. 

The state of knowledge of high RAP content mixtures did not fully develop over 

the years from the initial wave of research into the present day, possibly due to reduced 

motivation for high RAP use (e.g. reduction in raw material cost) and the comfort that 

was developed when using small RAP quantities.  Consequently, the approaches taken to 

evaluate RAP were likely not fully developed and stayed along familiar research paths.  

Note many of the failures of high RAP content mixes have occurred when unprocessed 

RAP has been used in HMA plants not equipped to handle the high contents (Bonaquist 

2007).  White (1977) noted problems of this nature some three decades prior while 
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studying the effect of crushing on mixture voids.  After approximately three decades of 

investigation, a comprehensive understanding of high RAP mixtures is not available.  

This is significant in the current environment, with high material demand and premium 

virgin material prices.  A recent document written by Brock and Richmond (2007) 

indicated the amount of recycling will likely increase over the next 20 years. 

 
 
2.3 RAP Properties 

Four key attributes related to RAP are: 1) total asphalt content within RAP; 2) 

amount of asphalt absorbed into the RAP aggregate; 3) properties of RAP asphalt; and 4) 

properties of RAP aggregate.  Understanding of these parameters is critical to the 

successful use of high RAP contents.  They are discussed in the following sections. 

 
 

2.3.1 Determination of RAP Asphalt Content  

Measurement of RAP asphalt content poses several issues.  Ignition methods and 

solvent extraction both have positive and negative aspects, especially with regards to 

RAP.  A portion of the asphalt materials community has expressed concern that the 

asphalt content determined via these two methods could be very different.  Ignition 

methods require correction factors for aggregate loss that can be difficult to determine for 

RAP (Prowell and Hurley 2005).  Hurley and Prowell (2005a) indicated a furnace using 

Tempyrox technology and an internal scale might be able to address the issue for RAP.  

On the other hand, Huang et al. (2005) reported the same asphalt content (6.8%) from 

both ignition and extraction procedures. 



www.manaraa.com

9 

Peterson et al. (2000) examined several solvent extraction methods in preparation 

for NCHRP 9-12 and chose the Asphalt Institute TP-2 test method using an n-Propyl 

Bromide solvent.  The authors felt it offered the best combination of safety, accuracy, and 

repeatability.  The state of Oregon uses ignition methods to determine RAP asphalt 

content and assumes a 0.5% aggregate correction factor, but notes the potential for error 

in doing so (Thompson 2003).  At present, RAP contents are limited to 30%, so 

increasing this value without properly accounting for binder in the RAP could be 

detrimental to payments and performance.  Thompson (2003) attempted to account for 

the variability using two forms of equations without success. 

Thakur et al. (2011) used the centrifuge extraction method with TCE solvent to 

recover RAP aggregate and then used the aggregate to generate aggregate correction 

factors for use in the ignition method.  The method was effective in producing corrected 

asphalt contents that closely matched solvent extracted asphalt contents.  However the 

process is not very practical for day to day determination of RAP asphalt contents. 

Kvasnak et al. (2010) conducted a laboratory study of four simulated RAPs; four 

aggregate types and two asphalt binders were utilized.  The simulated RAPs were made 

by following the AASHTO R-30 aging protocol (4 hours at 135 C followed by 5 days at 

85 C) on loose samples of asphalt mixture.  Three methods of determining the RAP 

asphalt content were examined: 1) centrifuge with TCE solvent; 2) reflux with TCE 

solvent; and 3) ignition oven.  The researchers found that the asphalt contents determined 

by all three of the methods were consistently lower than the actual asphalt contents of the 

mixes, with the ignition method generally yielding results closest to the actual value and 

the centrifuge method always yielding the overall lowest asphalt content results. 
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Research and experience has shown that the asphalt content of the finer fraction 

of RAP is higher than the coarser fraction (Khedaywi and White 1995).  Zearley (1979 

experimented with determining asphalt content on plus 4.75 mm (No 4 sieve) and minus 

4.75 mm RAP  and found asphalt contents of 3.0% and 6.8% for the coarse and fine 

fractions respectively.  The approximate asphalt film thicknesses were calculated for the 

coarse and fine aggregate fractions, and were found to be identical. 

Al-Qadi et al. (2009) extracted the bitumen for several aggregate size ranges from 

two RAP samples and found that the larger aggregate particles had lower bitumen content 

than finer aggregate particles.  The fine RAP portions had bitumen content of about 7% 

for the two RAPs tested, which was higher than the overall average content for the RAP 

sources of 4.7 and 5.1%.  The coarse RAP portions had a bitumen content of about 3 to 

4% which was lower than the overall average contents. 

 
 

2.3.2 Asphalt Absorption  

Kandhal and Khatri (1992) conducted a laboratory study to investigate the 

absorption of asphalt binder by aggregate as part of the Strategic Highway Research 

Program (SHRP).  Eight aggregate sources and four asphalt binders (32 mixture 

combinations) from the SHRP materials reference library were utilized in the study that 

encompassed a wide range of material properties.  Aggregate types tested included 

gravel, granite, limestone, sandstone, and basalt; the binder grades were AC-5, AC-10, 

AC-20, and AC-30.  Asphalt absorption was found to be a function of both aggregate and 

asphalt properties.  Data from the study indicated a general relationship between 

aggregate water absorption and asphalt absorption.  An equation was developed relating 



www.manaraa.com

11 

asphalt (Pba(s)) to water (Abs) absorption (Eq. 2.1), where both terms reference aggregate 

mass.  However the relatively low coefficient of determination for the relationship 

indicated that aggregate water absorption alone does not fully predict asphalt absorption. 

( ) ( )0.277 0.15ba sP Abs= +
 

R2 = 0.55  n = 96 (Eq 2.1) 

Kandhal and Khatri (1992) further found that aggregate particle shape and texture 

did not correlate with asphalt absorption.  Measurements of aggregate pore diameter 

indicated that no appreciable asphalt absorption occurred in aggregate pores less than 

0.05 micron in diameter though reasonable correlations were developed relating asphalt 

absorption to the size and quantity of aggregate pores larger than 0.05 micron.  In some 

cases the amount of asphalt absorption of any given aggregate source varied noticeably 

depending on the asphalt binder source. 

Analysis of the component chemistry of the asphalt binders tested provided some 

evidence that selective absorption of asphalt binder components might be occurring but 

no definitive conclusions could be drawn with regards to selective absorption.  The 

experimental results indicated that asphalt absorption was dependent not only on the 

specific aggregate and asphalt binder binders tested, but also on the interaction between 

the factors.  The primary conclusion of the study was that each type and source of asphalt 

binder must be treated independently (Kandhal and Khatri 1992). 

 
 
2.3.3 RAP Asphalt Properties 

A long standing question about RAP is: what measures can be taken to account 

for the aged binder?  Stiffness of the RAP binder is believed to be a key to producing 

successful high RAP mixtures; excessive stiffness may cause cracking and compaction 
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problems.  During a literature review, Al-Qadi et al. (2007) identified six primary 

mechanisms associated with age hardening: 

1. Oxidation through diffusive reactions between binder and oxygen 

2. Volatilization (evaporation) of light binder elements, mostly during construction 

3. Polymerization via chemical reaction of molecular components 

4. Thixotropy caused by long structure formation within binder 

5. Syneresis due to the exudation of thin and oily components  

6. Separation via removal of oils, resins, and asphaltenes by absorptive aggregates  

The greater the pavement damage where RAP was obtained, the greater the 

changes in binder properties relative to their original state (Al-Qadi et al. 2007).  RAP 

binder can be softened/rejuvenated using materials including flux oil, lube stock, slurry 

oil, lubricating oils, extender oils, and other specialty blends of bituminous materials. 

Stiffness of RAP bitumen is not necessarily uniform throughout the entire asphalt 

film thickness.  Staged extraction was used in combination with the Abson recovery 

method in Iowa as early as the 1970’s (Zearley 1979).  Increased penetration values 

(softer asphalt properties) were observed for the inner layers of the RAP asphalt film.  

Staged extraction of the asphalt film coating RAP was utilized by Noureldin and Wood 

(1987) and demonstrated that the stiffness of RAP bitumen is not uniform throughout the 

asphalt film coating an aggregate particle.  They extracted the bitumen from RAP in four 

stages using TCE then recovered and tested each stage independently; results are 

reproduced in Table 2.1.  Note that the original asphalt used to create the mix from which 

the RAP came was an AC-20 (Penetration = 40, Viscosity = 2000 ± 400).  Total asphalt 

content of RAP was 6%.  The viscosity of the outermost layer of RAP asphalt was more 
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than 7 times higher than that of the innermost asphalt layer; penetration of the innermost 

layer was more than double that of the outer layer.  Noureldin and Wood (1987) noted 

that “the amount of hardening that occurred in the old binder was relatively low 

compared to that in previous recycling projects.”  Selective absorption of the “light end” 

fractions of asphalt by aggregate is thought to occur (Noureldin and Wood 1987). 

The data of Noureldin and Wood (1987) and Zearly (1979) support a view that a 

gradient of stiffness exists in the RAP asphalt film. Their data indicate that the outer 

portion of RAP bitumen film has a higher stiffness than the inner portion.  For an 

individual particle of RAP coated with a film of aged asphalt, the innermost portion of 

the film is partially absorbed into the pores of the aggregate particle.  The stiffness of this 

innermost layer of the film has been affected somewhat by the aging process undergone 

by the pavement during its production, construction, and service life, but in general it has 

been protected from the most detrimental effects of aging by the outer portion of the 

asphalt film.  The outermost portion of the bitumen film will have the highest stiffness 

due to a greater exposure to detrimental environmental effects.  The process of full 

extraction of RAP asphalt with solvent will effectively mix all the layers together and 

destroy any variation in stiffness existing in the RAP asphalt film. 

 
Table 2.1 Results for Reclaimed Stage-Extracted RAP (Noureldin and Wood 1987) 
 
TCE Increment (mL) Binder (% by weight) Penetration Viscosity at 140 F (poises) 
First (200) 55.5 24 24,000 
Second (200) 26.5 33 15,000 
Third (300) 11.2 65 2,500 
Fourth (700) 6.8 57 3,300 

Note:  Results are averages of three replications, each conducted on seven 1200 g 
samples; percentage of asphalt cement to 6 percent by weight of mix; and original 
asphalt was AC-20. 
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2.3.4 RAP Aggregate Properties 

Prowell and Carter (2000) conducted a laboratory study of aggregate properties 

when recovered from the ignition oven asphalt content test.  Ten asphalt mixtures were 

tested that utilized nine aggregate sources commonly used in Virginia.  The mixtures 

were used to produce simulated RAP in the laboratory by loose mix short term oven 

aging.  Aggregate samples were recovered with the ignition oven, tested for Gsb, and the 

results compared to measured virgin aggregate Gsb.  In 8 of the 10 cases for fine 

aggregate, Gsb of extracted aggregates were lower than the known virgin aggregate Gsb; 

the average difference of the cases that were lower was 0.026.  For coarse aggregate, 60% 

of the cases were significantly different from the known virgin aggregate Gsb.  In all 10 

cases for coarse aggregate, Gsb of extracted aggregates were lower than the known virgin 

aggregate Gsb; the average difference was 0.039. 

Hall and Williams (1999a) also studied the effects of ignition oven testing on 

recovered aggregate properties.  Eight mixtures were produced from a range of aggregate 

types used in Arkansas.  Measurements of Gsb on recovered aggregate were lower than 

those for virgin aggregate in all eight cases, the average difference was 0.036. The 

authors stated that in a number of cases the differences were within the acceptable range 

of two test results specified by the test method. 

McDaniel and Anderson (2001) stated that it can be difficult to accurately 

measure Gsb of extracted RAP aggregate because of potential changes in the aggregate 

properties or gradation, due to the extraction process.  They recommended use of one of 

two approaches to avoid this difficulty.  The first approach was substitution of effective 

aggregate specific gravity for bulk aggregate specific gravity in volumetric calculations.  
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While this approach can provide a reasonable approximation in cases where asphalt 

absorption by the aggregate is low, in many instances that is not the case.  The second 

approach discussed was back-calculation of aggregate Gsb by measurement of RAP Gmm 

and use of an assumed value for absorbed asphalt for the RAP.   

Newcomb et al. (2007) discussed the difficulty of accurately measuring Gsb for 

RAP aggregate.  The authors mentioned that the ignition method could change aggregate 

properties and that solvent extraction methods did not always remove all of the absorbed 

asphalt from the aggregate pores.  It was recommended to use the back-calculation 

method for RAP aggregate Gsb with measured Gmm data and using either known asphalt 

absorption values from similar aggregates or an assumed value of 1.5%. 

A laboratory study of four simulated RAPs conducted by Kvasnak et al. (2010): 

details of the materials and methods were discussed in section 2.3.1 of this literature 

review.  Aggregate Gsb values determined with ignition oven extracted aggregate were 

found to be generally similar to or lower than the actual aggregate Gsb values determined 

by testing virgin aggregate.  Aggregate Gsb values determined with solvent extracted 

aggregate were found to be generally similar to or higher than the actual aggregate Gsb 

values.  In 47% of the comparisons (all test methods) the extracted aggregate Gsb values 

were significantly different than the virgin aggregate values; results were dependent on 

aggregate type.  Kvasnak et al. (2010) recommended that the back-calculation approach 

to estimate aggregate RAP Gsb by measurement of RAP Gmm be used whenever a 

reasonable estimate of absorbed asphalt content is available.  If an estimate of absorbed 

asphalt content is not available, measurement of RAP aggregate Gsb was recommended as 
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the next best option but that caution should be used when selecting an extraction method 

for certain aggregate types. 

Thakur et al. (2011) examined differences in recovered RAP aggregate properties 

from the ignition and solvent-centrifuge extraction methods.  They observed that Gsb of 

ignition recovered aggregates was lower than solvent-centrifuge recovered aggregates.  

Their results align with those of Kvasnak et al. (2010). 

 
 
2.4 Interaction of RAP and Virgin Materials 

Broadly speaking there are three theories of how RAP bitumen interacts with 

virgin materials when recycled into new asphalt mix: 

There are three conceptual positions that can be taken regarding the 
bituminous material within RAP: 1) black rock-all bituminous material acts as 
aggregate; 2) fully blendable-all bituminous material becomes fluid and 
totally blends with virgin asphalt binder; 3) partially reusable-some 
bituminous material livens and is reusable in the new mixture with the extent 
being dependent on several factors including aged binder properties, 
temperature, aging time, and additives (Doyle and Howard 2010a). 

 
McDaniel et al. (2000) addressed two main questions in NCHRP 9-12: does RAP 

binder act as part of the cohesive binder or is it inert (i.e., a “black rock”) and, if the RAP 

binder does blend, how does it affect the composite binder and the mixture?  Results of 

McDaniel et al. (2000) conclusively disproved the black rock theory and “strongly 

suggest[ed] that actual practice achieves a situation much closer to total blending than to 

no blending (black rock).” The question of whether RAP acts as a black rock in recycled 

mixes was addressed in more detail by Soleymani et al. (2000) using NCHRP 9-12 data. 

Doyle and Howard (2010a) compacted specimens of 100% RAP with no 

additional binder at a range of temperatures from 25 to 177 C.  If RAP truly behaves as a 
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black rock, the addition of heat to a sample before compaction would not aid compaction 

or increase density of the compacted specimen.  They found that for temperatures below 

71 C, compacted RAP behaved as compacted aggregate and specimens were not 

cohesive, implying that the aged RAP bitumen did not aid compaction and instead acted 

nearly as a black rock at low compaction temperature.  On the other hand, specimens 

compacted at 71 C and above were cohesive and resembled ordinary compacted asphalt 

mix.  A strong decrease in air voids was observed with increasing compaction 

temperature indicating that the RAP bitumen has an effect on compaction of RAP 

aggregate.  The black rock theory is not tenable for HMA or WMA since bitumen that 

has an effect on RAP aggregate will also affect performance in a recycled mixture to 

some degree, although the specific effects are not fully understood. 

The extent of blending has been widely disputed.  Some claim mixes have near 

100% blending and that it can occur relatively quickly, while others believe little 

blending occurs.  The literature summary of Al-Qadi et al. (2007) is quoted as follows:  

Research has shown that typical recycling projects have achieved blending of 
the RAP binder and the virgin binder, but have not been able to predict a-
priori what the percentage of the RAP binder that effectively combines with 
the new binder will be.  The blending is somewhere between 0 (black rock) 
and 100% (complete combining of the two binders) (Al-Qadi et al. 2007). 

 
This finding led to the statement that before higher RAP percentages can be 

utilized, methods to determine blending potential and account for relative RAP 

effectiveness must be developed.  If total blending is assumed and no blending occurs the 

result is a very soft binder with inadequate stiffness and too little asphalt.  The reverse is 

no blending assumed and total blending occurring.  The result is a very stiff mixture with 

excess asphalt.  Stephens et al. (2001) notes current design methods assume complete 



www.manaraa.com

18 

blending and states this does not occur.  Complete blending is a fundamental assumption 

behind the use of blending charts for recycled mix design with elevated levels of RAP.  

Blending charts have been used when over 25% RAP is included in Superpave mixtures.  

At intermediate RAP contents of more than 15% and up to 40%, (McDaniel et al. 2000) 

recommended use of blending charts.  However, McDaniel et al. (2000) found that when 

blending charts were used for recycled mixes with 40% RAP that “some non-linearity 

begins to appear in the blending equations.” 

The partial blending theory is that RAP behaves in some manner between the two 

extremes of no blending and complete blending; it was advanced by McDaniel et al. 

(2000) as probable for HMA with elevated RAP contents, especially for stiffer grades of 

virgin binder.  It was neither conclusively supported nor disproved for HMA by the data 

of McDaniel et al. (2000).  The concept of partial blending is also supported by the 

results of Druta et al. (2009) who investigated blending of virgin binder infused with 

metallic powder and RAP asphalt on the surface of RAP aggregate using X-ray computed 

tomography; the precise extent of partial blending could not be determined by Druta et al. 

A version of the partial blending theory was proposed by Tia et al. (1980) for cold 

recycled mix made with asphalt emulsion and rejuvenating agents.  Tia et al. (1980) 

stated that RAP asphalts “are usually hardened and have lost most of their original 

characteristics.”  Tia et al. (1980) further stated that new binder must “be added to the 

recycled mixture to replace the “ineffective” portion of the existing” bitumen.  Tia et al. 

(1980) opined that “the combination of the high compactive effort and the shearing action 

of the gyratory compactor forces the new and old binder to act together.”  Tia et al. 

(1980) assumed that 80% of the RAP bitumen was “effective” and used that assumption 
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to calculate percentages of total effective asphalt after virgin binder was added. They 

found that for cold recycled mixes produced with asphalt emulsions and rejuvenating 

agents, mix stiffness as measured by the Hveem stabilometer varied with curing time 

after compaction indicating a time dependence of partial blending. 

Doyle and Howard (2010a) proposed a partially-reusable extension of the partial 

blending theory of RAP behavior for HMA and WMA.  They hypothesized that there are 

three categories of RAP bitumen: “1) binder on the aggregate surface available for 

blending; 2) bitumen unavailable for blending; and 3) absorbed bitumen.”  Data from 

compaction of 100% RAP specimens with additional virgin binder was used to compute a 

term called ACeff.  ACeff was defined as “the ratio of effective RAP surface binder to total 

RAP bitumen.”  Their data showed a range for ACeff of 67 to 87% for three RAP sources 

at a 116 C (240 F) compaction temperature.  However a fundamental shortcoming of the 

ACeff approach outlined in Doyle and Howard (2010a) is that it was based on the 

assumption that the current RAP bitumen content is adequate to satisfy the current 

requirements of the RAP aggregate to meet the goals of the recycled mix design.  It also 

failed to provide any way to estimate the amount of inaccessible absorbed RAP bitumen 

independently of the amount of RAP bitumen unavailable for blending that may 

potentially exist on the surface of the RAP aggregate. 

The extent of partial blending is a function of many variables including 

temperature, time, and additives (e.g. warm mix additives).  Under some combinations of 

variables the extent of blending likely approaches or perhaps includes total blending; 

however under other combinations of factors the extent of partial blending is possibly 
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noticeably less than total blending.  The factors affecting blending and the potential 

extent of blending are addressed in the following sections. 

 
 
2.4.1 Factors Affecting Blending 

There are numerous factors that can affect how the RAP truly acts within an 

HMA mixture.  Factors related to production, storage, transportation, and placement can 

all affect how much blending takes place. The amount of blending can have a significant 

effect on performance.  In order for blending of the new and old asphalt binder to take 

place, there must first be heat transfer between the new and old asphalt binder.  This heat 

transfer begins in the production stage.  The amount of time that the RAP materials are 

mixed with the virgin materials will affect the amount of blending and depends upon the 

type and configuration of the HMA production facility. 

Several sources have observed that in the laboratory, the amount of time that RAP 

is heated will affect mix properties.  McDaniel et al. (2000) observed that heating times 

in excess of two hours could change RAP binder properties.  Results of Doyle and 

Howard (2010a) indicated that RAP specimens compacted after four hours of heating 

time have generally lower air voids than specimens compacted after two hours of heating. 

Stephens et al. (2001) investigated the effect of heating time on RAP with 11 

mixes containing 15% RAP.  Pre-heating time of the RAP before specimen fabrication 

was varied between zero and 540 minutes; results were then compared to a 12th mix made 

with extracted RAP aggregate and no RAP asphalt.  The addition of RAP with no pre-

heating time increased unconfined compression and indirect tensile strengths of the 

resulting specimens when compared to the same aggregate blend and all virgin binder.  
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Strength of the specimens remained relatively constant for when RAP had between zero 

and approximately thirty minutes of pre-heating time.  Specimen strengths began to 

increase for RAP pre-heating times greater than 30 minutes and began to level out at the 

longest RAP pre-heating times investigated. 

Daniel and Lachance (2005) performed laboratory testing on HMA with up to 

40% RAP (two RAP sources with extracted binders graded as PG 94-14 and PG 82-22) 

combined with virgin PG 58-28 binder.  The results showed an increase in VMA and 

VFA due to the RAP.  To assess the effect of aging, RAP was aged between 2 to 8 hours 

and observations indicated there was an optimum heating time to allow softening, break 

down, and blending of virgin materials.  Further research into this issue was 

recommended to simulate plant operations in the lab for mix design purposes.  Carpenter 

and Wolosick (1980) studied the effects of asphalt modifiers on RAP with time after 

mixing.  They found that time-dependent diffusion of asphalt modifiers through the 

recycled asphalt caused variations in the resilient modulus with time. 

Since the amount of time that mixture spends at high temperature affects the 

softening of RAP particles and the time-dependent diffusion of asphalts of different 

viscosities, the use of storage silos could also potentially affect the level of blending that 

occurs.  The longer mixture is stored the more time for the aged RAP asphalt to become 

heated which increases the potential for blending of the aged and virgin bituminous 

materials.  Once the HMA is produced, it is placed into haul trucks and transported to the 

paving site.  Depending upon the length of haul time, the amount of blending may 

change.  Long haul times will allow for more blending and short haul times will result in 

less blending.  Any blending of binders that does occur is believed to be time dependent.   
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In addition to these production/construction issues, the properties of the RAP 

itself will likely affect the amount of blending that occurs.  RAP taken from the roadway 

via cold milling will generally be a graded material.  Crushing and processing is 

sometimes used to produce a consistent RAP material. The resulting gradation of the 

RAP material will affect the potential for blending.  Within the HMA production process, 

the finer particles contained within the RAP will become heated first and the larger 

particles will take longer to reach the intended mixing temperature.  Research and 

experience has shown that the asphalt content of the finer fraction of RAP is higher than 

the coarser fraction [Khedaywi and White (1995), Watson et al. (2008), Al-Qadi et al. 

(2009)].  Therefore, since more asphalt binder is contained within the fine fraction and 

these materials will reach temperature quicker, there is more potential for RAP materials 

containing large fine fractions to blend with virgin materials than RAP materials 

containing a larger coarse fraction. 

Additionally, RAP materials that contain very oxidized and hard binders will 

require more heat, mixing and time for blending to occur.  The asphalt from some sources 

of RAP is stiffer than others.  McDaniel et al. (2000) observed recovered asphalt grades 

of PG 82-25, PG 82-24, and PG 89-15 for RAP sources from Florida, Connecticut and 

Arizona respectively.  Daniel et al. (2010) determined RAP asphalt grades ranging from 

PG 76-22 to PG 94-10 for seven RAP sources in New Hampshire; Daniel and Lachance 

(2005) determined RAP extracted asphalt grades of PG 94-14 and PG 82-22.  Li et al. 

(2008) observed that stiffness of RAP asphalt affected high temperature stiffness of 20 

and 40% RAP mixtures more than it affected low temperature stiffness and fracture 
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properties.  Daniel et al. (2010) also observed greater affect on high temperature 

properties than low temperature properties when RAP was included in the mixture. 

Properties of the RAP aggregates can also affect the amount of RAP asphalt 

binder available for blending.  Aggregates contained within the RAP that are highly 

absorptive will have aged asphalt that is absorbed into the aggregate pores.  It is highly 

unlikely that this absorbed RAP asphalt will become blended with the new asphalt binder.  

Therefore, asphalt content of the RAP alone may not always indicate blending potential.  

This material is not worthless since it prevents absorption of virgin asphalt by RAP 

aggregate; however it should not be considered effective binder. 

 
 
2.4.2 Extent of Blending 

The interaction that occurs between new and aged asphalt is a combination of 

mechanical mixing that can transfer some amount of the RAP bitumen away from RAP 

aggregate and chemical diffusion between RAP bitumen and virgin binder on the surface 

of RAP aggregate.  When RAP is incorporated into a recycled mix through a RAP collar 

or other means in an asphalt plant, it receives a brief but relatively intense (but not as 

much as the virgin aggregate) period of heating which softens the bitumen film.  Some, 

but not all, of the bitumen film may be removed from the RAP aggregate and transferred 

to virgin aggregate particles by mechanical mixing.  The portion of the bitumen film 

absorbed into the RAP aggregate particles will not be removed. 

Mechanical mixing of RAP and virgin materials was studied by Huang et al. 

(2005) for fine RAP fractions.  RAP (10 to 30% of minus 4.75 mm) was combined with 

plus 4.75 mm virgin aggregate (no binder) and a relatively consistent loss of bitumen 



www.manaraa.com

24 

from the RAP fraction was noted (11% of the aged bitumen).  This amount of lost 

bitumen determined by Huang et al. (2005) could be viewed as readily available to 

interact with virgin binder or aggregate.  Al-Qadi et al. (2007) noted that purely 

mechanical mixing of this type will not determine the true level of blending between 

RAP asphalt and virgin binder due to the process of diffusion between bitumen and 

binder that will occur during and after the mixing process.  The results of Huang et al. 

(2005) support a view that the majority of RAP bitumen will remain as a film coating 

RAP aggregate and that interaction of RAP bitumen with virgin aggregate will be trivial.  

(Shirodkar et al. 2010) also investigated transfer of RAP asphalt from fine RAP to coarse 

virgin aggregate through mechanical mixing and estimated the range of partial blending 

between RAP and virgin binder to be 48 to 77%. 

A diffusion process occurs at the interface between the virgin binder and the RAP 

bitumen.  Diffusion is the process where asphalts of different viscosities in contact will 

intermingle without external assistance until viscosity equilibrium is reached (Carpenter 

and Wolosick 1980).  The diffusion of asphalts is time dependent and the rate is driven 

by the magnitude of the viscosity differential (Carpenter and Wolosick 1980).  This 

supports the observation of McDaniel et al. (2000) that when stiffer grades of virgin 

binder were used in recycled mixes, the resulting performance appeared to more closely 

resemble partial blending than complete blending. 

Lee et al. (1983) used a dye chemistry technique to evaluate dispersion of 

recycling agents in recycled mix and found that only localized dispersion occurred after 

compaction.  Staged extraction of asphalt from RAP in recycled mixes was utilized by 

Huang et al. (2005) to investigate stiffness of different layers in the asphalt film.  Huang 
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et al. (2005) mixed 20% RAP with virgin asphalt and aggregate to allow staged 

extraction of the asphalt film thickness from the RAP particles.  The testing indicated two 

distinct viscosity zones.  The outer portion (≈ 40% of the film thickness) appeared to 

blend with the virgin asphalt, while the inner portion (≈ 60% of the film thickness) 

retained much of the pure RAP bitumen properties.  The viscosity of the inner portion 

was nearly double the viscosity of the outer portion. 

The results of Huang et al. (2005) support a view that the diffusion process 

between virgin binder and RAP bitumen does not result in complete blending.  It 

logically follows that if a softer grade of virgin binder or a rejuvenating agent is used in 

the recycled mix that the resulting properties would begin to approach the complete 

blending case.  Ozer et al. (2009) investigated blending in 9.5 mm NMAS HMA with 

40% RAP in the laboratory and observed that a double bumped softer virgin binder grade 

PG 58-28 had better blending than standard binder grade of PG 64-22.  On the other 

hand, Mogawer et al. (2009) found that mixture complex modulus of 30 and 50% RAP 

WMA (Sasobit®) mixtures (4.75 mm NMAS) was the same whether binder was the 

regional specified grade PG 64-28 or double bumped PG 52-33. 

Kim et al. (2007) investigated blending of RAP asphalt and virgin binder for five 

RAP sources in mixtures containing 30% RAP.  After mixing, samples of coarse RAP 

aggregate, coarse virgin aggregate and mixture mastic (combination of RAP and virgin 

materials) were taken.  A method to measure large molecular size with a gel-permeation 

chromatography (GPC) technique without complete binder extraction was utilized.  

Previous studies cited by Kim et al. indicated that GPC data was highly correlated to 

asphalt viscosity.  Both the raw GPC data and the estimated viscosity data indicated that 
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stiffness of the asphalt coating the coarse RAP aggregates was always higher than 

stiffness of the asphalt coating the coarse virgin aggregates.  Stiffness of the mastic 

material always fell in between the other values.  The asphalt film coating virgin 

aggregate had properties similar to or slightly stiffer than those measured for completely 

virgin mixture depending on RAP source. 

Actual viscosity of the mixtures was measured on recovered asphalt (completely 

mixed by extraction process) and compared to the estimated values for RAP and virgin 

aggregate binder films.  In all five cases examined by Kim et al. (2007) the actual 

viscosity values were greater than the estimated values for the coarse virgin aggregate 

binder film and less than the estimated values for the RAP coarse aggregate film.  The 

data of Kim et al. (2007) supports a view that aged RAP asphalt primarily remains 

attached to RAP aggregate but that some amount of chemical diffusion occurs between 

the RAP asphalt and virgin binder. 

For HMA and WMA using standard binder grades (i.e. not rejuvenators or 

recycling agents), essentially all of the blending between bitumen and binder that will 

occur is believed to occur while recycled mix is at an elevated temperature and that the 

magnitude of any long term blending (i.e. at ambient temperature after compaction) will 

be negligible.  Recycling agents have a different formulation and much lower viscosity 

than standard grades of asphalt; because of this, the process of their diffusion with RAP 

bitumen will likely occur faster than the diffusion process between RAP bitumen and 

standard grade virgin binder (i.e. higher viscosity).  Heat accelerates the process of 

diffusion (i.e. diffusion occurs faster at elevated temperatures).  If so, then the opposite 

must also be true (i.e. diffusion slows down or is not as complete at less elevated 
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temperatures).  This could have important implications for WMA recycled mixes.  The 

length of time that a mix is held at elevated temperature (i.e. heated storage in silos, 

transport etc) may also have an effect on the diffusion process. 

A regional pooled fund study in the Midwest looked at three RAP sources at 

contents up to 50% (McDaniel et al. 2002).  This study included a comparison of plant 

produced mixes to a linear blending chart.  In two of the three cases, linear blending 

worked very well.  In the third case, however, the mixture was consistently stiffer than 

expected based on linear blending, perhaps showing the effects of plant production 

variables.  Shah et al. (2007) investigated properties of plant produced mixtures 

containing 0, 15, 20 and 40% RAP.  Results indicated that mixture stiffness properties 

did not increase as RAP was added nearly as much as was predicted from blending charts 

and that the standard binder grade (PG 64-22) could be used for mixtures with up to 40% 

RAP.  Stephens et al. (2001) observed PG binder grades of extracted asphalt from a 10% 

RAP mix were higher for plant produced than for laboratory produced mixture. 

Bonaquist (2007) used the modulus of plant produced mix to estimate the 

effective binder modulus.  This value was subsequently compared to extracted binder 

properties; good overlap of the modulus curves was indicative of good mixing.  Bennert 

and Dongré (2010) proposed a four step procedure to back calculate effective binder 

stiffness properties of recycled mixtures from mixture dynamic modulus properties. 

 
 

2.5 High RAP Mix Design Methods 

Davidson et al. (1977) outlined the first comprehensive mix design method for 

RAP with recycling agents.  The basic procedure consisted of determining RAP 
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aggregate gradation, asphalt content and properties of the recovered RAP asphalt.  A 

dosage rate for the desired recycling agent that produced an acceptable consistency of the 

final asphalt blend was then determined experimentally.  Nomographs were provided and 

demonstrated to estimate the amount of recycling agent required.  Final mixture 

properties were then evaluated to ensure adequacy for the desired use of the mixture. 

Kallas (1984) proposed modifications to the Hveem and Marshall mix design 

methods to incorporate RAP with the use of blending charts.  The approach did not 

address the issue of binder blending directly but instead experimentally determined the 

optimum recycling agent or new asphalt content.  Five mix designs were performed with 

five different RAP sources from five different states using 40 to 52% RAP.  High RAP 

variability was noted as a potential concern.  High RAP variability and mixtures 

containing RAP has been noted by others including Solaimanian and Tahmoressi (1996) 

who analyzed four field projects in Texas that contained 35 to 50% RAP. 

McDaniel et al. (2001) evaluated three very different RAP sources and RAP 

contents up to 40% in NCHRP 9-12.  The guiding principle was that mixes with and 

without RAP should meet the same requirements.  In the end, when the results of the 

black rock, binder, and mixture studies were considered, a consistent pattern emerged.  

Low RAP contents had negligible effect, high RAP contents had a significant effect and 

intermediate RAP contents had mixed results, supporting a tiered system for RAP. 

The recommendations of NCHRP 9-12 were adopted by AASHTO. The current 

Superpave mix design specification (AASHTO 2007) prescribes that up to 15% RAP by 

weight of mix may be added without changing the virgin binder grade.  At RAP contents 

higher than 15% up to 25%, the virgin binder grade is adjusted one grade softer to 
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account for the stiffening effect of the hardened RAP binder; complete mixing of new 

and recycled binder is assumed.  At RAP contents above 25%, a detailed design is 

necessary to select the properties of the virgin binder or to determine the amount of RAP 

that can be used with a given virgin binder. 

McDaniel et al. (2001) noted that designing mixtures conforming to Superpave 

specifications may not be feasible in mixtures with greater than 40% RAP due to the high 

fines content of many RAP stockpiles.  If pavement to be recycled has a high percentage 

of minus 0.075 mm material, it may be hard to use it since it will have even more minus 

0.075 mm material after milling (Roberts et al. 1996). 

Two major obstacles in designing high RAP content mixes were identified by 

Newcomb et al. (2007). The first being stiffness of the aged RAP binder. Use of a softer 

binder grade to compensate could introduce problems with mixing and diffusion of the 

binders. The resulting pavement would be vulnerable to damage early in its life before 

adequate dispersion and diffusion has taken place to reach the target asphalt blend 

properties.  Secondly, use of large RAP percentages can lead to excessive fines due to the 

often finely crushed nature of RAP from the milling process. 

With regard to design, Chehab and Daniel (2006) used the MEPDG software 

(Level 3) and determined RAP content and binder grade are significant variables.   Stiffer 

binder grade was found to have a significant effect on predicted amounts of thermal 

cracking and permanent deformation.  The effective binder grade, therefore, is significant 

to agencies desiring to implement the MEPDG approach (most if not all states 

eventually).  Interestingly, increasing binder low PG temperature resulted in more 

predicted transverse cracking up to a point after which predicted thermal cracking leveled 
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off.  Daniel et al. (2009) investigated the effects of RAP mixture variables with MEPDG 

in more detail and found that the assumed PG for RAP mixtures does not greatly affect 

results for Level 1 analysis but can have a significant effect on results when using Level 2 

or Level 3 analysis. 

Recently, the state of Illinois has recognized that 100% contribution from residual 

RAP asphalt may be inaccurate (Al-Qadi et al. 2007); as of 2007, Illinois HMA mix 

designs with RAP include a 100% contribution.  Many (if not most) other states use 

similar practices.  According to Al-Qadi et al. (2007), the Illinois DOT allowed up to 

30% RAP in HMA designed according to Superpave; with up to 50% RAP in shoulders 

and stabilized sub-bases.  Specifying a maximum amount of RAP binder replacement 

instead of maximum RAP content has been recommended by Daniel et al. (2010). 

Current specifications dealing with mix design of HMA with RAP are: AASHTO 

M323: Superpave Volumetric Mix Design; ASTM D 3515: Standard Specification for 

Hot-Mixed, Hot-Laid Bituminous Paving Mixtures; and ASTM D 4887: Standard 

Practice for Preparation of Viscosity Blends for Hot Recycled Bituminous Materials.  

These standards rely on blending charts to assess the effect of RAP on the mix design.  

For relatively low percentages of RAP this approach can be successful.  For high 

percentages of RAP, this approach may not have the ability to capture the performance of 

the mixture.  High RAP content mix designs that adequately account for all parameters 

are not available. 
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2.6 Test Methods and Relevant Parameters 

This section includes information related to the test methods utilized in this study.  

Of interest was information related to specific test method parameters, studies that 

focused on use of RAP utilizing the test methods of interest, as well as associated 

background information or analysis methods needed for later analysis or discussion in 

this dissertation.  The information is organized by topic in the following subsections. 

 
 

2.6.1 Cantabro Durability Test 

The Cantabro abrasion loss test is often used in design of open-graded friction 

course (OGFC) mixtures, also referred to as porous friction course (PFC), as a 

measurement of durability and of the potential for aggregate loss from mixtures (Watson 

et al. 2003).  An upper limit of aggregate loss for un-aged OGFC mixture specimens of 

20% has been recommended (Watson et al. 2004).  Use of polymer-modified binders was 

found to noticeably reduce the aggregate loss compared to specimens made with an un-

modified binder and the same aggregate type and gradation (Watson et al. 2004). 

Celauro et al. (2010) utilized the Cantabro test to evaluate the durability of dense 

graded mixtures containing RAP; the test was performed according to European standard 

EN 12697-17 with 18 C test temperature on un-conditioned Marshall compacted 

specimens.  Three gradations were studied, two surface mixes and one base mix; two 

asphalt contents were studied for each surface mix and three asphalt contents were 

studied for the base mix (seven mixtures total).  Each of the seven mixtures was tested 

with 0, 40 and 50% RAP content.  For 0% RAP mixes, mass loss ranged from 4 to 7%; 
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for 40% RAP mixes, mass loss ranged from 5.5 to 10%; and for 50% RAP mixes, mass 

loss ranged from 8 to 12.5%. 

Alvarez et al. (2008) found the Cantabro test to be somewhat sensitive to changes 

in fundamental binder properties due to aging but stated that test results might be more 

influenced by aggregate properties of the mixtures tested than by the binder properties.  

Based on a limited data set, Kraus (2008) provided evidence of a possible relationship 

between Cantabro aggregate loss for mixtures and results of Dynamic Shear Rheometer 

(DSR) testing on the polymer-modified binder components of the mixtures; testing was 

performed on both un-aged and laboratory aged binders and mixtures. 

 
 

2.6.2 Relevant Low Temperature Asphalt Mixture Properties 

Fundamentally the formation of thermal cracks within asphalt pavements is 

related to the volume contraction undergone by the pavement caused by a temperature 

decrease.  Asphalt mixture expands or contracts in response to temperatures changes; the 

rate of thermal volumetric change of asphalt mixture is dependent on its binder 

properties, asphalt content, aggregate type, gradation, VMA (Nam and Bahia 2004), and 

possibly other factors. 

For asphalt mixtures the rate of thermal volumetric change is often assumed to be 

isotropic (i.e. the same in all three directions) (Vinson et al. 1989).  However others 

(Hills and Brien 1966) have stated that orientation and particle shape of aggregates can 

result in anisotropy; Jones et al. (1968) also mention that thermal volume change of many 

rocks and minerals is anisotropic.  If isotropic behavior is assumed then a linear thermal 
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coefficient of contraction is defined as simply one third the rate of cubic thermal 

volumetric change (Jones et al. 1968, Vinson et al. 1989). 

Lytton et al. (1993) proposed a relationship to estimate the thermal contraction 

coefficient of mixture from the binder thermal contraction coefficient and the mixture 

volumetric properties (Eq. 2.2).  Lytton et al. (1993) recommended use of an average 

value for BAC of 345x10-6 (1/C) for most asphalt binders in lieu of testing.  Nam and 

Bahia (2004) provided values for Bagg of 5.1x10-6 (1/C) for limestone aggregate and 11.3 

x10-6 (1/C) for gravel aggregate. 

3
AC agg agg

mix
Total

VMA B V B
B

V

× + ×
=

×
 (Eq 2.2) 

where: 

Bmix = linear coefficient of thermal contraction for asphalt mixture (1/C) 

BAC  = volumetric coefficient of thermal contraction of asphalt binder (1/C) 

Bagg = volumetric coefficient of thermal contraction of aggregate (1/C) 

VMA = volume of voids in mineral aggregate (%) 

Vagg = volume of aggregate in asphalt mixture (%) 

VTotal = total volume (i.e. 100%) 

The rate of thermal volumetric change for asphalt mixture is not constant 

throughout the range of temperatures experienced by asphalt pavements (Nam and Bahia 

2004).  At temperatures on the order of 25 C and less the linear expansion coefficient of 

asphalt is typically broken into two regions on either side of a temperature known as the 

glass transition temperature (Tg).  The region above the glass temperature is known as the 

fluid region and the region below as the glassy region.  A marked discontinuity in the rate 
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of thermal volumetric change occurs at Tg; the rate is essentially constant above or below 

Tg within either the fluid or glassy regions respectively.  Typical nomenclature is that the 

linear coefficient of thermal contraction in the fluid region is termed α1 and within the 

glassy region is termed αg (Nam and Bahia 2004). 

Work by Nam and Bahia (2004) measured the Tg, α1, and αg values of several 

asphalt mixtures and found that for mixtures Tg was dependent only on Tg of the binder 

component.  Values for α1 and αg were dependent on not only corresponding binder 

properties but also on aggregate type, gradation, VFA, and effective asphalt content 

(Nam and Bahia 2004).  They also found that the glass transition temperature was not 

easily defined as a single value but rather that there was a range of temperatures within 

which transition occurred.  Twenty-four mixtures were investigated by Nam and Bahia 

(2004) including six asphalt binders and four 12.5 mm NMAS aggregate gradations.  The 

test results for mixtures with PG XX-22 binder are summarized in Table 2.2.  The other 

mixtures contained PG 58-40 binder with a variety of modifications; thermal contraction 

coefficients for those mixtures were similar to the values shown in Table 2.2 but Tg 

values were much lower (on the order of -47 to -60 C). 
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Table 2.2 Summary of Asphalt Mixture Thermal Properties Taken from Nam and 
Bahia (2004) 

 
Binder Grade Aggregate Type Thermal Properties 
and Type and Gradation Tg (C) αg (10-6/C) α1 (10-6/C) 
PG 82-22  Limestone Coarse -24.5 16.2 73.9 
SBS Radial Limestone Fine -33.0 9.8 66.5 
 Gravel Coarse -33.0 32.0 77.8 
 Gravel Fine -25.2 28.0 96.6 
 Average -28.9 21.5 78.7 
PG 82-22  Limestone Coarse -25.4 32.6 85.5 
Steam Distilled Limestone Fine -26.1 16.6 57.9 
 Gravel Coarse -18.9 31.3 75.0 
 Gravel Fine -27.4 25.8 78.3 
 Average -24.5 26.6 74.2 
PG 76-22 Limestone Coarse -30.9 3.0 64.6 
Ethylene Terpoly Limestone Fine -39.7 26.3 66.7 
 Gravel Coarse -34.7 28.7 81.7 
 Gravel Fine -32.0 23.8 89.5 
 Average -34.3 20.5 75.6 
Average Limestone Coarse -26.9 17.3 74.7 
Average Limestone Fine -32.9 17.6 63.7 
Average Gravel Coarse -28.9 30.7 78.2 
Average Gravel Fine -28.2 25.9 88.1 

 
 
 
2.6.3 Low Temperature Cracking 

As the temperature drops, asphalt pavements shrink and longitudinal tensile 

contraction stresses are developed.  If the tensile stress exceeds the mixture tensile 

strength at the same temperature fracture will occur and a crack will develop.  When the 

temperature drops very quickly or reaches an unusually low value a crack will often 

develop suddenly; this is often referred to as single event thermal cracking (SETC).  The 

critical temperature at which SETC occurs is denoted Tcr. 

Bouldin et al. (2000) developed a semi-empirical mechanistic model and analysis 

method to estimate Tcr for pavements using binder test data.  Bending beam rheometer 
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(BBR) data and direct tension data were used for the analysis.  The cumulative binder 

tensile stress developed due to thermal contraction was determined numerically and 

compared to the binder tensile strength at the same temperature; the intersection of stress 

and strength was considered Tcr.  A simple damage transfer function was used to 

determine pavement thermal stress by multiplying the binder thermal stress by a 

pavement constant (PC).  Calibration of the transfer function yielded a best fit value of 

PC = 24 using observed SETC temperatures from the Lamont test road in Alberta, 

Canada (seven different binders).  Data from a test road in Pennsylvania was used to 

validate the analysis (three binders).  A single cooling rate of 1 C/hr was used for all 

calculations but it was noted that maximum cooling rates for different geographic regions 

have been observed to range from 0.5 C/hr to 3 C/hr. 

Rowe et al. (2001) evaluated four different numerical fitting techniques for 

producing master curves of relaxation modulus from BBR data.  The methods evaluated 

included: 1) Christensen-Anderson (CA); 2) Christensen-Anderson-Sharrock-Bouldin 

(CASB); 3) Christensen-Anderson-Sharrock (CAS); and 4) Discrete Spectrum (DS).  

They found that the CAS method generally provided the best fit of the experimental data 

used for the evaluation. 

Shenoy (2002) demonstrated a variation of the Tcr analysis method of Bouldin et 

al. (2000) that did not require binder direct tension data.  The method involved fitting of 

asymptotes to the thermal stress curve developed during Tcr analysis.  The first asymptote 

was fitted to data at the end of the thermal stress curve (i.e. lowest temperatures 

evaluated) and a second asymptote was fitted to data at the beginning of the thermal 

stress curve (i.e relatively high temperature).  A single asymptote procedure (SAP) 
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calculated the intersection of the first asymptote with the x-axis (i.e. zero thermal stress).  

A two asymptote procedure (TAP) calculated the intersection temperature of the two 

asymptotes as Tcr.  Forty-nine binders were evaluated by Shenoy according to the 

proposed TAP and SAP methods as well as the dual instrument method (DIM) developed 

by Bouldin et al. (2000).  For 90% of the binders evaluated, the Tcr values determined by 

TAP were within 1 C of the DIM values and within 1.5 C for the SAP.  For the other 

binders the maximum difference between TAP and SAP values and the DIM values were 

2 C and 2.8 C respectively.  Shenoy noted that selection of a different reference 

temperature for computation of thermal stress by any of the procedures would change the 

computed Tcr temperature somewhat. 

Marasteanu et al. (2004) found that for the standard one hour specimen 

conditioning time, deviations from the time-temperature superposition assumptions did 

not greatly affect results with either the DIM or SAP methods of Tcr analysis.  For nine 

asphalt binders investigated the DIM results were found to be different from SAP results; 

the differences were -1.6 to 5.7 C for a PC of 18 and were -3.6 to 3.6 C for PC of 24.  

They recommended that the asymptote in the SAP method be fitted to data at consistent 

thermal stresses and not at consistent analysis temperatures for better results. 

The Tcr thermal stress analysis technique originally developed by Bouldin et al. 

(2000) and refined by others was formalized into AASHTO R 49-09: Standard Practice 

for Determination of Low-Temperature Performance Grade (PG) of Asphalt Binders 

(AASHTO 2009).  The method requires BBR and direct tension test data as well as 

assumptions of cooling rate, linear thermal contraction coefficient.  Relaxation master 

curves are determined from BBR data by the Christensen-Anderson-Marasteanu (CAM) 
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method.  A pavement constant (PC) value of 18 is specified.  The technique could be 

extended for analysis of asphalt mixture data with use of appropriate parameters. 

Shah et al. (2007) investigated low temperature properties of plant produced 

mixtures containing, 0, 15, 25 and 40% RAP using indirect tensile creep compliance 

strength data.  Thermal stress analysis was performed with the data and used to estimate 

Tcr for the mixtures.  Results indicated that for mixtures with standard virgin binder grade 

(PG 64-22) the estimated Tcr temperatures for mixtures with RAP were 3 to 6 C higher 

than for a 0% RAP mixture (i.e. less resistance to thermal cracking); interestingly, Tcr 

values were nearly identical for mixtures with 15 and 40% RAP (0.5 C difference).  Use 

of a softer binder grade (PG 58-28) improved performance in 25% RAP mixtures but did 

not result in much change for 40% RAP mixtures (0.6 C difference). 

Daniel et al. (2010) investigated properties of plant produced mixtures containing 

0, 15, 20 and 25% RAP.  Using the Tcr analysis method on recovered binder, they 

observed that increasing the proportion of RAP asphalt in the mix improved the low 

temperature properties (i.e. calculated Tcr was lower).  The results did not correspond to 

the low temperature grading results using just BBR data.  The authors mentioned that the 

extraction and recovery process resulted in complete binder blending and that this was 

not necessarily representative of the mixture properties. 

 
 

2.6.4 Bending Beam Rheometer Mixture Testing 

Zofka et al. (2005) presented a method to measure low temperature stiffness 

properties with the Bending Beam Rheometer (BBR) on thin beams of asphalt mixture 

made from gyratory compacted specimens.  Mixture beams were prepared from 6 asphalt 
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mixtures that contained 0, 20, or 40% RAP and either PG 58-28 or PG 58-34 virgin 

binder.  Testing of the mixture beams was performed at -18 and -24 C.  Measured 

stiffness of the mixtures increased as RAP was added to the mixtures for both test 

temperatures.  A limited amount of indirect tension testing was also performed on the 

mixtures and results indicated that mixture stiffness at 60 seconds of loading time as 

measured by the two methods was fairly similar for both test temperatures. 

Zofka et al. (2008) used the BBR mixture beam test and the indirect tension test to 

produce creep compliance curves for twenty asphalt mixtures.  The data was then used as 

input for the thermal cracking module of the Mechanistic-Empirical Pavement Design 

Guide (MEPDG) to estimate thermal cracking of a pavement over its service life.  The 

two test methods were observed to yield slightly different creep compliance curves, 

however the authors developed and presented an easy to use shifting function to 

transform BBR results to results by indirect tension testing.  Comparison of thermal 

cracking estimates with the MEPDG using data from both test methods showed that 

similar data from both test methods for the same mixture resulted in similar predicted 

thermal cracking performance. 

Use of the BBR mixture beam test on specimens of 100% RAP mortar (RAP 

particles smaller than 2.36 mm) with virgin binder was investigated by Ma et al. (2010) 

and Bautista et al. (2009).  Good correlations were observed between mortar stiffness and 

binder stiffness and a method was developed to estimate low temperature properties of 

RAP asphalt without extraction and recovery.  The method however, is complex and 

requires testing of several combinations of RAP mortar and new binder.  Also the final 

method developed only uses RAP particles passing the 0.3 mm sieve (#50) and retained 
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on the 0.15 mm sieve (#100); it is not clear if the asphalt on this one particle size of RAP 

is representative of all the RAP asphalt. 

Marasteanu et al. (2009) evaluated use of the BBR mixture beam test method.  

Statistical analysis of dimensions for 660 mixture beams showed that test specimens of 

appropriate dimensions can be reliably prepared.  A sensitivity analysis performed using 

the Hirsch model showed that with a target mixture air void level of 4%, a range of air 

voids up to 4% above or below the target value (i.e. air voids ranging from 0 to 8%) 

would have a very small affect on measured asphalt mixture stiffness at low 

temperatures.  The error would be 2% or less and for test loading times of about ninety 

seconds and longer, the error would be less than 1%.  Three dimensional finite element 

modeling of BBR mixture beam testing was performed with the ABAQUS finite element 

code; a digital image scanning technique was utilized to base the ABAQUS models on 

actual mixture beam specimens.  Results showed that the distribution of aggregate 

particles within a mixture beam was very important to measured stiffness.  It was 

possible for distributions of aggregate to occur that produced a cross section in the beam 

composed entirely of asphalt mastic.  For these beams the stiffness values were 

dramatically lower than for beams with a more uniform aggregate particle distribution. 

Velasquez (2009) investigated the sensitivity of determination of asphalt mixture 

stiffness at low temperatures to varying test specimen dimensions.  A combination of 

experimental data and finite element modeling was utilized.  Ten mixtures were tested at 

three test temperature with a variety of test specimen dimensions.  Results showed that as 

testing temperature is decreased the disparity in binder and aggregate stiffness lessens 

and the mixture stiffness becomes less reliant on aggregate size and distribution.  The 
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consequence of this is that the minimum test specimen dimensions required to ensure that 

a representative volume element (RVE) of the mixture is obtained become much smaller.  

Experimental data suggested that the BBR mixture beam test method could produce 

representative measurements of creep stiffness for asphalt with a minimum of three test 

replicates even when the nominal maximum aggregate size (NMAS) of the mixtures was 

greater than the smallest dimension of the beam. 

Marasteanu and Anderson (2001) discussed how to identify errors in rheological 

test data for asphalt binders (not asphalt mixtures).  For BBR test data a quick check of 

the results was recommended to verify that slope of the m-value parameter decreases as 

the loading time increases.  Data that did not follow this rule of thumb would likely be 

due to testing error.  The concept could be extended to asphalt mixtures. 

 
 

2.6.5 Relevant Pavement Density Parameters 

A department of transportation (DOT) survey questionnaire reported by Linden et 

al. (1989) with 48 respondents provided the following information.  Core samples were 

used by essentially all responders in some form.  Twenty-one respondents used a 

maximum Va density criteria (1-10%, 1-9%, 12-8%, 2-7.5%, 5-7%).  One agency noted 

rejection below 8% Va, while seventeen agencies reported price adjustments and thirteen 

additional agencies reported price adjustments or removal and replacement below their 

minimum density limit; a range of other options were also reported with less frequency.  

The average maximum in place air voids reported by state DOT’s was 9.9% with a range 

of 5 to 15%.  Current in-place air voids requirements for Southeastern United States 

DOTs are summarized in Table 2.3. 
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Measurement of air voids using different methods poses challenges.  Questions 

arise such as what are the issues between different test methods due to surface texture or 

water absorption?  Another issue that has been speculated to occur is volume reduction in 

the specimens tested by the Corelok® method as a result of the vacuum pressure applied 

during removal of air from the specimen.  Buchanan (2000) indicated that the Corelok® 

method provided the most consistent and accurate results of specimen bulk gravity for 

compacted mixtures with high air void contents. 

 
 
Table 2.3 In-Place Air Void Specification Summary of the Southeastern U.S. 
 
 Specification State and Va Requirements 
Surface Layer MS AL GA FL SC NC AR LA TX 
Target Air Voids 7.0 6.0 <7.8 <7.0 6.0 <8.0 6.0 <8.0 7.0 
Full Pay-High 7.0 9.7 7.8 8.1 7.8 8.0 8.0 89 PWL 8.5 
Full Pay-Low 4.0 2.2 3.8 2.0 4.0 --- 4.0 --- 4.7 
Removal Required 9.0 11.2 13.5 9.5 9.4 10.8 9.1 30 PWL 10.0 
Notes: All states shown specify bulk gravity of roadway cores be measured by 

AASHTO T 166 or an equivalent state test method utilizing submerged 
specimens. For states that specify a range of target in-place density, the median 
of the range is reported.  Louisiana utilizes a percent within limits (PWL) 
criteria.  References to all nine DOT specifications are provided in the 
references. 

 
 
 
As of July 2010, the Corelok® was not part of MDOT protocol for dense graded 

mixtures (only used for OGFC design).  Typically, a core is cut at the beginning of a 

project and Gmb measured via AASHTO T 166.  The result is used to adjust nuclear 

density measurements, which are used for acceptance.  Periodically, the correlation 

between AASHTO T 166 and the nuclear gage measurement is updated throughout the 
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project.  Paraffin coated specimens are required when excessive water absorption occurs 

during the laboratory test. 

Cooley (2003) studied permeability of Mississippi field cores.  As part of the 

study Gmb of the cores was measured by the Corelok® method (AASHTO T 331) and by 

the submerged specimen method (AASHTO T 166).  Twelve different mixtures (two 9.5 

mm, five 12.5 mm, and five 19.0 mm NMAS) that included both fine and coarse 

aggregate gradations were tested for a total of 175 data points with air voids ranging from 

3.8 to 12.4% via T 166 (equivalent of 3.8 to 15.1% via T 331).  For all twelve mixtures 

the two measurement methods yielded significantly different results.  The author 

observed that similar results were obtained from both methods when the air voids were 

less than about 5% but that results from the two methods began to diverge noticeably as 

the air voids increased above 5%.  The cause of the divergence in results between the two 

methods was stated to be likely due to the large interconnected voids present in 

specimens with high air void contents.  The data indicated that coarse graded mixtures 

generally had larger differences in results than fine graded mixtures.  Cooley (2003) 

presented a linear relationship between air voids measured according to the two methods 

(Eq. 2.3).  According to the relationship, air voids of 7% and 10% measured by the 

submerged method were equivalent to air voids of 8.3% and 12.3% respectively as 

measured by the Corelok® method. 

 R2 = 0.87 n = 175 (Eq 2.3) 

Brown and Cross (1989) measured in place density of five pavements as part of a 

study of rutting; the pavements had between six and sixteen years of traffic at the time of 

investigation.  Air voids were observed to range from nearly zero to 8%.  Badaruddin and 

( ) ( )331 1661.333 1.04a T a TV V= −
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White (1994) reported in place air voids of twenty-three pavements in Indiana that ranged 

from nearly zero to 13.2%.  Lu (2005) reported that mean air voids of sixty-three 

pavements examined in California were about 7% and ranged from 2 to 14%.  Two sets 

of data were used by Seo et al. (2007) to study air void reduction in service; first data set 

was from a study to refine gyratory compaction requirements, and the second data set 

was from cores taken from I-85 after two years of traffic.  It was observed that 8 to 11% 

initial air void levels were around 6 to 8% after two years of service.  Prowell and Brown 

(2007) measured density of forty pavements across the United States with air void levels 

that ranged from 5.0 to 14.5% immediately after construction.  For the same pavements 

air voids ranged from 1.9 to 11.5% two years after construction.  It was observed that 

about two-thirds of pavement densification due to traffic occurred in the first three 

months after construction. 

Density specifications are often misused, as discussed by Brown (1990), as 

mixture changes (e.g. increases in fines or asphalt content) can reduce voids when the 

correct way to reduce voids of a properly designed mix is through compaction.  Hughes 

(1989) recommended using 7% air voids as the mean requirement in conjunction with 

1.5% standard deviation within statistically based end result specifications.  Linden et al. 

(1989) used 7% air voids as a baseline and reported that every 1% air void increase 

resulted in approximately 10% loss in pavement life.  Literature review and a DOT 

survey questionnaire were the data sources used by Linden et al. (1989).  Literature 

review revealed 10 to 30% fatigue life reduction and 4 to 6% penetration reduction per 

percent increase in air voids.  Multiple studies (e.g. Huber and Heiman 1987) report air 

voids below 3% are a primary indicator of rutting.  Brown (1990) reported that in place 
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air voids of 3 to 8% would generally provide good performance of a surface mixture 

passing through or above the restricted zone. 

 
 

2.6.6 Loaded Wheel Rut Testing 

Sivasubramaniam et al. (2004) compared data from the PURWheel laboratory 

loaded wheel tester to the Purdue accelerated pavement tester (APT) and to mixture 

performance on the NCAT test track.  All PURWheel testing was performed at 50 C.  

The authors found relatively weak correlations (R2 = 0.35) between PURWheel results 

and mixture performance at the NCAT track when PURWheel testing was performed on 

slab specimens cut from the APT test sections (air void range 8.0 to 11.6%).  Much better 

correlations (R2 = 0.69) were found between PURWheel results and NCAT test track 

results when PURWheel testing was performed on slab specimens cut directly from the 

NCAT test track (air void range 4.9 to 6.6%).  The difference in the correlation was 

stated to be likely due to differences in air voids and compaction parameters. 

Sivasubramaniam et al. (2004) used the power law model given in Eq. 2.4 that 

was fitted to rut data for analysis; the total rut depth was considered to be the sum of 

specimen downward deformation in the wheel-path and any specimen uplift relative to 

the original surface outside of the wheel-path.  The model constant a was stated to be 

related to mixture properties and initial air voids.  The model constant b was stated to 

depend on test temperature as well as mixture type and to be a good indicator of mixture 

rutting potential. 
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( )Total Rut
b

pa N=  (Eq 2.4) 

where: 

Np = number of load applications 

a, b  = material constants 

 
 
2.6.7 Moisture Sensitivity 

Kiggundu and Roberts (1988b) defined moisture damage as “the progressive 

functional deterioration of a pavement mixture by loss of the adhesive bond between the 

asphalt cement and the aggregate surface and/or loss of the cohesive resistance within the 

asphalt cement principally from the action of water.”  Kiggundu and Roberts (1988a) 

stated that the mechanisms of stripping “are likely to be asphalt-aggregate specific, 

environmentally specific and service conditions specific.” 

Moisture damage in asphalt mixtures is generally thought to be due to one of or a 

combination of two major causes: 1) loss of cohesion within the binder film (i.e. 

softening of the binder in the presence of moisture); and 2) loss of adhesion between the 

binder film and the aggregate particles (Hicks 1991).  Loss of adhesion in a mixture is 

visually apparent (e.g. stripping).  Loss of cohesion in a mixture is less readily observed 

visually,  but can be measured by loss of strength of the mixture. 

Kandhal (1992) identified a number of factors that can lead to premature failure 

of pavements due to moisture damage.  They include: 1) poor pavement drainage; 2) poor 

compaction; 3) excessive dust coating of aggregate; 4) insufficient drying of aggregate 

during production; and 5) use of weak aggregates.  Hughes (1989) also emphasized the 
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importance of good compaction in the field to reduce the level of permeable voids in 

producing pavements that are resistant to moisture damage. 

Terrel and Al-Swailmi (1993) discussed a hypothesis for moisture damage in 

asphalt mixture that was developed during the Strategic Highway Research Program 

(SHRP).  Laboratory test data was utilized to support the hypothesis that a range of air 

voids on the order of 7 to 11% in compacted mixture will produce a void structure and 

conditions that are favorable to occurrence of moisture damage.  The range of air voids 

where this occurs was termed “pessium” voids (i.e. opposite of optimum).  Void levels 

less than this range result in a relatively impermeable pavement where moisture does not 

intrude and void levels higher than this range result in a relatively free-draining pavement 

where moisture cannot remain for long periods of time (i.e. PFC or OGFC). 

Cooley et al. (2001) investigated permeability and density of eleven coarse-

graded field mixtures and found that for 9.5 and 12.5 mm NMAS mixtures excessive 

permeability occurred at air void contents greater than approximately 7.7%.  For 19.0 mm 

NMAS mixtures, excessive permeability was observed for air voids greater than about 

5.5%.  For 25.0 mm NMAS mixtures the critical air void content was about 4.4%.  The 

data of Cooley et al. (2001) supports the hypothesis of Terrel and Al-Swailmi (1993). 

 
 
2.6.7.1 Tensile Strength Ratio (TSR) Testing 

Amirkanian and Williams (1993) investigated indirect tensile and resilient 

modulus strengths of 15% RAP HMA mixtures with both laboratory specimens and field 

cores.  The source pavement for the RAP was known to be moisture damaged before 

reclamation.  Results indicated that the RAP mixture had significantly higher wet and dry 
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tensile strengths and resilient moduli than the 0% RAP control.  TSR and resilient 

modulus ratio values were higher than the control, but not significantly. 

Castro-Fernandez (1996) performed moisture resistance testing with two different 

HMA mixtures from Nevada with RAP contents between 0 and 70%.  Virgin aggregate 

type was not specified; PG 64-22 binder was used for the 0% RAP mix.  Blends of RAP 

and very soft binders were selected for mixtures with RAP based on binder blending 

charts.  When lime was included, TSR values were acceptable for both mixtures with any 

amount of RAP.  When lime was not included the amount of RAP had a significant effect 

on TSR values.  For both mixtures without lime and between 0 and 30% RAP the TSR 

values were below 0.50 (as low as 0.30); when the RAP content was increased to 50% the 

TSR value for one mixture was 0.60 and for the second mixture was greater than 0.80.  

For both mixtures with 70% RAP the TSR values were greater than 0.80.  The results of 

Castro-Fernandez (1996) indicate that inclusion of RAP in moisture susceptible mixes 

was able to significantly improve the moisture resistance of the two mixes studied. 

Zaniewski and Viswanathan (2006) reported on use of the AASHTO T 283 test 

method for three mixtures of known good field performance.  The 16 hour loose mix 

aging at 60 C required by the test method was included as part of the specimen 

preparation method; conditioning by vacuum saturation alone, and by one freeze-thaw 

cycle in addition to vacuum saturation was evaluated.  Results indicated that test method 

was not sensitive to saturation level or to inclusion of a freeze-thaw cycle as part of the 

conditioning protocol.  The TSR results indicated that all three mixtures were moisture 

sensitive; the authors concluded that “TSR is not a reliable indicator of field 

performance” for the mixtures tested. 
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Bagampadde et al. (2006) stated that variability in moisture sensitivity test data 

was primarily due to aggregates and not to binder.  Chen et al. (2007) studied the effect 

of RAP on moisture sensitivity with mixtures produced using blends of virgin binder and 

recovered RAP asphalt mixed with aggregate.  Increasing the amount of recovered RAP 

asphalt was observed to have a detrimental effect on TSR results.  It is important to note 

that the testing of Chen et al. is not representative of actual practice since the bond 

between the RAP asphalt and aggregate was broken by the extraction and recovery 

process.  Chen et al. (2007) also presented a concept of relative energy loss to analyze 

indirect tensile strength test results and found the concept was capable of identifying 

moisture susceptibility. 

Al-Qadi et al. (2009) studied HMA mixtures containing 0 to 40% RAP and found 

that in general TSR values improved as RAP was added to the mixture.  PG 64-22 was 

used for the 0 and 20% RAP mixtures and PG 58-28 was used for the 40% RAP mixture; 

details of the aggregates used were not provided.  The authors stated that selective 

absorption of binder into aggregate for RAP could potentially produce a bond that was 

resistant to stripping and also that incomplete blending could result in double coating of 

RAP particle resulting in improved TSR values. 

 
 

2.6.7.2 Loaded Wheel Testing  

Aschenbrener (1993) used the HLWT to evaluate moisture damage for twenty 

pavement mixtures of known field performance ranging from very good to very poor.  

Testing was performed on slab specimen at 50 C; stripping inflection points (SIPs) were 

computed from the test data and used for mixture evaluation and comparison.  Specific 
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details of the mixtures tested were not provided but the test results were found to be 

sensitive to aggregate properties such as amount of dust coating, dust to binder ratio, and 

clay content.  The author observed that average SIP for mixtures as determined by the 

Hamburg test provided an excellent correlation to field performance with respect to 

moisture damage.  Pavements with good field performance had average SIPs generally 

greater than 10,000 passes and pavements with poor field performance had average SIPs 

less than 3,000 passes. 

Additional test data presented by Aschenbrener (1995) for four aggregates (details 

not given) and 4 asphalt binder grades (PG 52, PG 58, PG 64, and PG 70) indicated that 

moisture resistance of the mixes was improved by increasing the binder grade.  The 

amount of short term aging used in the laboratory was also found to affect HLWT results; 

more short term aging resulted in better performance.  Aschenbrener (1995) also found 

not all binders graded as PG 58-22 provided the same performance; crude oil source and 

refining process were observed to influence HLWT results. 

Pan and White (1999) conducted moisture sensitivity testing of seven mixtures 

and a variety of anti-strip agents with both the PURWheel loaded wheel tester and 

AASHTO T 283 TSR testing.  Results indicated that in general the PURWheel provided a 

better indication of the stripping potential of a mixture than TSR testing.  Results of 

PURWheel testing were able to demonstrate stripping in mixtures at test temperatures 

ranging from 25 to 60 C. 

Izzo and Tahmoressi (1999) evaluated the repeatability of the Hamburg loaded 

wheel tester (HLWT) and stated that its use with steel wheels provided good repeatability 
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on gravel mixes and poor repeatability for limestone mixes.  Use of solid rubber wheels 

with the HWLT was observed to produce significantly less damage than steel wheels. 

Hall and Williams (1999b) performed a limited evaluation of the HWLT in 

comparison to the Evaluator of Rutting and Stripping in Asphalt (ERSA); both field and 

laboratory compacted specimens of a field produced mixture were tested.  Gyratory 

compacted specimens were observed to have significantly lower rut depths than field 

compacted specimens. 

Cross et al. (2000) performed testing of eight different mixtures with the APA at 

40 C.  Results of wet testing using one of three pre-conditioning procedures was 

compared to results of standard dry testing.  The three pre-conditioning procedures were 

1) 2 hour soak at 40 C; 2) specimen saturation and 24 hr conditioning at 40 C; and 3) 

specimen saturation plus one freeze-thaw cycle followed by 24 hr conditioning at 40 C.  

The authors found that the 2 hour soak pre-conditioning procedure produced mean rut 

depth results that were significantly different from the dry APA test data.  The other two 

preconditioning procedures were not found to produce statistically significant differences 

in mean rut depths compared to dry testing.  The APA results corresponded well with TSR 

results from standard AASHTO T 283 testing in ranking moisture susceptibility of mixes.  

Hunter and Ksaibati (2002) performed wet testing of asphalt mixtures with the Georgia 

loaded wheel tester (GLWT) and found that neither saturation conditioning nor saturation 

plus one freeze-thaw cycle conditioning prior to testing significantly affected results. 

West et al. (2004) evaluated under water testing in the APA for moisture 

sensitivity assessment of asphalt mixtures.  Data was obtained for a variety of mixtures, 

specimen geometries, load application methods, and conditioning protocols. Initially 
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testing was to be performed at 64 C; however that temperature was found to be too severe 

for steel wheel testing and therefore all testing was performed at 50 C.  The results were 

mixed but some general conclusions were presented by the authors.  Pre-conditioning of 

specimens by vacuum saturation and one freeze-thaw cycle was stated to appear to be 

able to distinguish mixtures prone to stripping from those that were not.  The steel wheel 

load application method was stated to be more severe than pressurized hose load 

application method but also appeared to be more variable.  The authors further indicated 

that wet testing of unconditioned specimens was inadequate to cause stripping.  Beam 

specimens were found to generally yield the most meaningful results but cylindrical 

specimens were stated to be more practical. 

Buchanan and Smith (2005) tested 24 Mississippi mixtures with a rotary wheel 

tester; the test method was found to be a severe performance test for moisture 

susceptibility.  Gravel mixtures were found to exhibit much greater deformation than 

gravel/limestone mixtures.  A normalized rut depth parameter (specimen deformation 

divided by number of test cycles) was used during analysis. 

Lu (2005) performed an extensive evaluation of the HLWT on California 

pavements. Test parameters were 50 C test temperature and a 30 minute wait period once 

specimens were placed in the machine for the water bath to reach temperature.  Twelve 

laboratory mixtures were evaluated by testing of slabs specimens (24 by 33 by 7.6 cm) 

prepared by rolling wheel compaction to between 6 and 8% air voids.  Cores were also 

taken and tested from 57 pavement sections of known moisture performance.  Lu (2005) 

found that the HLWT did not clearly distinguish between mixes with different observed 

moisture sensitivities.  The test method tended to overestimate performance of mixes 
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with conventional binder and to underestimate performance of mixes with polymer-

modified binder.  The author provided five major recommendations to improve the 

HLWT: 1) vacuum saturation of specimens prior to testing; 2) pre-conditioning of 

specimens at the test temperature prior to testing; 3) use of different test temperatures 

based on binder grade; 4) performing wet and dry tests on mixtures and using a ratio of 

results for evaluation; and 5) that the HLWT equipment be modified with an air-heating 

system or environmental chamber to maintain high air temperatures during testing. 

Kim and Lutif (2006) performed moisture susceptibility testing on an aggregate 

blend of limestone and gravel with combinations of mineral fillers and lime treatment (16 

mixture combinations) with TSR, wet APA, and wet HLWT test methods.  All mixes were 

HMA and the binder was PG 64-22.  TSR testing according to AASHTO T 283 was 

performed with six freeze-thaw conditioning cycles.  Wet APA testing was performed at 

64 C after a 16 hour conditioning period on gyratory compacted specimens with a target 

4% air void content.  Wet HWLT testing was performed at 70 C after a minimum 30 

minute temperature equilibrium period on gyratory compacted specimens with target 7% 

air voids.  The three test methods provided consistent rankings of aggregate blends by 

moisture susceptibility from high to low. 

Shiwakoti (2007) compared the APA and HLWT for moisture sensitivity 

assessment for six HMA mixtures with acceptable TSR values (>0.80).  Five of the six 

mixtures used PG 64-22 binder and the sixth mixture used PG 70-28 binder; details of 

aggregate types were not provided but were a range of materials used in Kansas.  The wet 

HLWT was performed at 50 C on gyratory compacted specimens; a minimum 30 minute 

soak period was specified after the water bath reached temperature before testing 
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commenced.  Both wet and dry APA testing at 50 and 60 C test temperatures was 

performed on gyratory compacted specimens vacuum saturated then brought to the test 

temperature and allowed to soak for at least one hour before testing commenced.  

Pressurized hose load application was used for all APA testing.  Four of the six mixes 

tested exhibited visual evidence of stripping in wet APA testing; the APA did not indicate 

any stripping inflection point (SIP) in the test data for any of the mixes.  The HLWT 

correctly showed SIPs for the four mixes which exhibited visual evidence of stripping 

and did not show SIPs for the two mixtures without visual stripping.  For APA testing 

conducted at 60 C the dry test exhibited greater rut depths than the wet test.  For APA 

testing conducted at 50 C the opposite trend was observed; the wet test exhibited greater 

rutting than the dry. 

Cooper (2009) used TSR and HLWT testing to evaluate a mixture both with and 

without Sasobit®; the base binder was a polymer modified PG 76-22.  The mixture was 

75% limestone, 6% sand, and 19% RAP.  HMA Compaction temperature was 157 C and 

compaction temperature for the Sasobit® mix was 143 C.  Hamburg testing was 

performed according to AASHTO T 324 at 50 C after 90 minutes of conditioning; 320 by 

260 by 80 mm slab specimens prepared by kneading compaction were utilized for 

Hamburg testing.  Mixtures with and without Sasobit® both erformed well in TSR and 

HLWT testing and were stated to not exhibit evidence of moisture susceptibility.  The 

mixture containing Sasobit® rutted less than the mixture without, however the difference 

was hypothesized to be at least partly due to lower air voids of the Sasobit® specimens. 

Nielson (2010) evaluated the test temperature used in the HLWT for three asphalt 

binder grades and two asphalt binder sources (six combinations) on a single blend of 
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limestone aggregate with a known history of stripping.  All mixes were HMA and the 

binders tested were PG 70-28, PG 64-28, and PG 58-28.  Slab specimens were prepared 

by linear kneading compaction and tested at a range of test temperatures from 45 to 60 C.  

The author defined a critical stripping temperature (CST) below which no stripping 

would occur and above which stripping would occur; the existence of a stripping 

inflection point (SIP) in the data was considered evidence of stripping.  Based on the 

data, it was stated that the number of cycles required to induce stripping in the mix was 

highly variable and independent of the test temperature and binder grade, provided the 

test temperature was greater than the CST for the mix.  A range of CSTs was reported for 

each PG high temperature grade tested.  For PG 58 binder grade the reported range of 

CSTs was 44 to 49 C.  For PG 64 binder grade the reported range of CSTs was 49 to 54 

C.  For PG 70 binder grade the reported range of CSTs was 54 to 55 C.  The author 

recommended that the best approach would be to select HLWT test temperatures based 

on anticipated environmental conditions during service, including both geographic 

location and location within the pavement structure. 

Azari (2010) conducted wet HLWT at 50 C and TSR testing of two mixtures of 

general low and high moisture susceptibility and observed that HLWT results were more 

consistent with observed field performance of the mixtures.  The TSR results predicted 

that both mixes were acceptable with regards to moisture susceptibility. 

Austermann et al. (2009) performed HLWT on hot and warm mixed 10 and 25% 

RAP mixtures.  Two dosage rates of Sasobit® were investigated, 1.0 and 3.0% by total 

binder weight.  All the WMA mixtures performed worse than the HMA control, however 

increasing either the Sasobit® dosage rate or the RAP content improved performance.  
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Mogawer et al. (2011a) performed HLWT at 40 C on hot and warm mixed 9.5 mm 

NMAS 40% RAP mixtures.  The virgin binder grade was PG 52-28 and a wax based 

additive (not Sasobit®) was used for the warm mix.  The RAP mixture provided good 

performance and no evidence of SIP at either hot or warm temperatures.  Performance of 

the no RAP control mixture decreased noticeably for the WMA compared to the HMA 

and SIPs were evident for all control mixture testing. 

 
 

2.7 Field Performance of High RAP 

This section contains pertinent information from studies of high RAP mixtures.  

The focus was on field studies or studies of plant mixed material.  The information is 

organized by topic in the following sections. 

 
 

2.7.1 Airfields 

Shoenberger and Demoss (2005) reported on performance of four recycled 

military airfield pavements containing 35, 40, 41.5 and 60% RAP after between eight and 

twelve years of service.  Original construction data was evaluated when available as well 

as pavement condition index (PCI) survey data over the life of the pavement and current 

mixture properties at the time of evaluation.  All of the mixtures were designed using the 

Marshall method with 75 blows per face; relatively soft asphalt grades were used and the 

60% RAP mixture also used a recycling agent.  Review of construction records indicated 

that adequate compaction was obtained.  PCI data showed a relatively similar change 

with time for the recycled mixtures that was not dramatically different than what was 

observed for non-recycled mixtures at some of the airfields.  High severity block cracking 
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was observed in the 60% RAP mixture.  The original mix designs had relatively high 

asphalt contents yet rutting was not observed to be a problem.  Most of the observed 

pavement distresses were environmentally related.  Resilient modulus testing of field 

cores indicated stiffness values within the normally observed range of airfield mixtures. 

A recent review of the potential for use of RAP in airfield pavements (Hajj et al. 

2010) found that previous use of RAP (less than 20%) in airfield pavements had 

performed acceptably or that the excessive distresses were not due to use of RAP.  A 

municipal airfield in Illinois was performing well after five years that had used 100% 

RAP as base course underneath a new HMA overlay.  Su et al. (2009) investigated use of 

40 and 70% RAP mixes for airfield surfaces in Japan; the mixtures utilized rejuvenating 

agents and virgin asphalt.  Laboratory test results from the Japanese raveling test 

indicated that good raveling performance could be anticipated for the recycled mixtures.  

Test sections were placed on an airfield taxiway and their performance monitored for 

three years.  No cracking or raveling was observed during the monitoring period. 

 
 

2.7.2 Highways 

As early as 1975, Utah was experimenting with asphalt recycling (Betenson 

1979).  An initial trial section yielded good results and a second, larger field trial was 

conducted with 77%, 80%, and 100% RAP in 1977.  The 100% RAP required 1.5% of 

AC-10 virgin asphalt and 0.5% of a softening agent with the goal of combined asphalt 

graded as AC-5.  Severe problems with emissions requirements were seen during mix 

production likely due to how RAP was introduced directly into the drum plant.  Resilient 
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moduli of cores taken from the pavement containing RAP one year after placement were 

lower than those for the conventional 100% virgin mix placed at the same time. 

In 1977, Arizona produced a recycled asphalt mix with 80% RAP and 20% virgin 

aggregate in a drum mix plant (McGee and Judd 1978).  2.7% of soft virgin AR 2000 

binder (AR 2000 ≈ AC-5 or AC-10) was combined with 50% of an aromatic extender oil 

and added to the RAP mix.  The overall asphalt content of the final mix as determined by 

extraction was 5.3%.  The mix output temperature of from the plant was reduced to 

around 200 F and 2% moisture was added to the aggregate to meet emissions 

requirements. 

Little and Epps (1980) evaluated 25 field projects constructed between 1974 and 

1978 involving levels of RAP of 30 to 100%, with most utilizing 70% RAP or more.  

Both surface and base courses were included.  Cores taken from the pavements and in 

place FWD testing were used to characterize the recycled pavement performance.  An 

analysis was conducted to determine the appropriate pavement design structural 

coefficients for these pavement layers as used in the 1972 AASHTO pavement design 

guide.  It was found that “based on the structural coefficient evaluation, recycled 

materials used as surface courses are comparable to conventional asphalt concrete 

surfaces.”  The surface courses containing RAP were found to be slightly stiffer 

compared to ordinary HMA surface layers.  Little and Epps (1980) felt that recycled 

materials, while stiffer than conventional materials, would perform adequately in 

relatively thick pavement systems.  However, the potential for fatigue cracking of 

recycled materials in thinner pavement systems was felt to be higher than conventional 

pavements and would warrant extensive further investigation. 
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Hossain et al. (1993) reported on the long term field performance of asphalt 

overlays containing 50% RAP placed on the surface of Interstate-8 in Arizona; all of the 

recycled overlay test sections experienced approximately 7 million equivalent single axle 

loads (ESALs) over their 10 year service life.  Two rehabilitation strategies were 

evaluated: 1) mill and replace followed by overlay and 2) simple overlay.  Functional 

pavement performance was evaluated by roughness and skid resistance measurements; 

results indicated that the “functional performances of recycled and virgin mix overlays 

were similar” Hossain et al. (1993).  Pavement structural performance was evaluated by 

pavement condition index (PCI) ratings and by rut depth measurements.  For the simple 

overlay rehabilitation strategy, the virgin sections performed better than the recycled 

sections.  For the mill and replace followed by overlay rehabilitation strategy, “the 

recycled mix outperformed the virgin mix” Hossain et al. (1993).  Rutting performance of 

the recycled and virgin sections was similar.  For eastbound lanes, cracking of recycled 

sections was higher than for virgin sections; for westbound lanes, cracking of recycled 

and virgin sections was similar.  No moisture damage problems were observed in any of 

the sections but this is not particularly surprising given the arid climate (average annual 

rainfall for the area was about 6 inches). 

Paul (1996) compared pavements containing RAP to virgin mixtures.  Pavements 

were constructed between 1978 and 1982 and were 6 to 9 years old at the time of 

evaluation.  RAP percentages of 20 to 50% were incorporated and there were no 

significant differences found between the recycled and virgin mixtures.  Evaluation was 

based on structural and serviceability aspects with a pavement condition rating (PCR) 

score and deflection measurements. Ten locations were sampled per roadway to 
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determine material properties with time (e.g. asphalt content, viscosity, penetration, 

ductility, and gradation). 

Kandhal et al. (1995) studied five projects that each consisted of a recycled 

section and a control section containing between 10 to 25% RAP.  Laboratory and field 

characterization was performed, and paired t-testing indicated no significant differences 

between the RAP and virgin sections when the pavements had been in service 18 to 27 

months.  A state of recycling practice conducted by FHWA determined that well 

controlled and constructed pavements containing RAP had performed well up to 17 years 

after construction (Sullivan 1996). 

Potter and Mercer (1997) reported on six field projects in the United Kingdom 

containing between 18 and 60% RAP.  Both surface and base mixtures were included in 

the evaluation and the pavements had experienced between three and nine years of traffic.  

Rutting performance of the pavements was good and visual conditions surveys also 

indicated good performance of the recycled mixes.  Deflection testing (equipment similar 

to FWD) indicated that structural capacity of the recycled sections was similar to the 

control sections.  Accelerated full scale testing of a 50% RAP base mix indicated 

performance was as good as the conventional base mix control. 

Chen and Daleiden (2005) reported on performance of a 30% RAP HMA test 

section on the surface of a highway in Texas after ten years of service.  The test section 

performed as well as the virgin mixture control section.  Two additional pavement 

sections that were hot-in place recycled with 75% RAP were also discussed.  One of the 

sections was too brittle, and cracked much sooner than expected; the other section 

performed reasonably well. 
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Zaghloul and Holland (2008) looked at historical pavement data in California to 

investigate the long term performance of pavements with HMA containing 15% RAP 

compared to no RAP pavements.  Data from 131 pavement sections was investigated 

(RAP and controls) and evaluated for structural adequacy, pavement roughness and 

pavement distresses.  Results suggested that long term pavement performance with RAP 

mixtures would be comparable to other nearby pavements subject to similar conditions. 

Maupin et al. (2009) reported on six projects placed in Virginia with HMA 

mixtures containing 20 to 30% RAP.  Laboratory testing of plant produced mixture 

indicated no significant difference in performance between moderate RAP content and 

control mixtures for beam fatigue, APA rutting, or TSR moisture susceptibility tests. 

Vavrik et al. (2008) evaluated nine hot mixed plant produced mixtures containing 

15 to 40% RAP.  The RAP was fractionated before use.  Binder single grade bumping 

(high temperature PG reduced one grade) and double grade bumping (high PG reduced 

one grade, and low PG increased one grade) was investigated.  Laboratory evaluation of 

the field produced mix was conducted for fatigue and stiffness (dynamic modulus).  

Fatigue performance of the high RAP mixtures was better than the Illinois DOT fatigue 

design criteria in use at the time.  Stiffness of all the RAP mixes was higher than the 

assumed design value in use by the Illinois DOT.  Mixtures with single bumped binder 

and double bumped binder grades had very similar stiffness; it was concluded that double 

bumping was not necessary. 

West et al. (2011) evaluated the long term performance of eighteen projects from 

the Long Term Pavement Performance (LTPP) program encompassing sixteen states and 

two Canadian provinces; the projects ranged were eleven to twenty years old.  The 
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projects examined performance of 0 and 30% RAP HMA mixtures for overlays; most of 

the mixtures were placed before the advent of current Superpave mix design 

specifications.  Results indicated that the RAP mixtures had a slightly higher incidence of 

fatigue, longitudinal, transverse, and block cracking but a slightly lower incidence of 

raveling.  The RAP mixtures were observed to perform better than or equal to virgin 

mixtures in a majority of cases.  The same LTPP data set was evaluated by Carvalho et 

al. (2010) who looked at FWD deflection measurements as an estimate of structural 

capacity of the pavements.  No statistical differences were found between the RAP and 

virgin mixtures for any of the eighteen projects indicating that structural capacity was the 

same for virgin and 30% RAP overlays of the same thickness and comparable materials. 

Aguiar-Moya et al. (2011) looked at the LTPP overlay project in Texas with 

virgin and 30% RAP HMA after seventeen years of service.  Similar to West et al. 

(2011), the authors determined that RAP overlays had a generally improved resistance to 

rutting but a somewhat higher incidence of all types of cracking distresses compared to 

virgin overlays.  They used the observed pavement performance data to calibrate models 

that predict pavement service life.  They then used the models in conjunction with typical 

Texas material costs and traffic parameters to estimate life cycle costs of the various 

rehabilitation alternatives.  Their analysis indicated that the potentially reduced lifespan 

of RAP mixtures due to earlier crack development may negate initial cost savings, 

especially for thin overlays on the order of 50 mm.  It is important to remember that the 

RAP mixtures examined by West et al.(2011) , Carvalho et al. (2010), and Aguiar-Moya 

et al. (2011) were almost all designed prior to the advent of Superpave and did not 
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include any warm mix technologies so their properties are not entirely representative of 

current practice mixes. 

 
 

2.7.3 Accelerated Loading Facilities 

West et al. (2009) reported on performance of 20 and 45% RAP HMA test 

sections compared to a 0% RAP control section under accelerated full scale loading.  Six 

surface mixtures were produced: 1) 20% RAP with PG 76-22 binder; 2) 20% RAP with 

PG 67-22 binder; 3) 45% RAP with PG 52-28 binder; 4) 45% RAP with PG 67-22 

binder; 5) 45% RAP with PG 76-22 binder and 6) 45% RAP with PG 76-22 binder and 

1.5% Sasobit® as compaction aid (no change in mix temperature).  The RAP was 

fractionated into coarse and fine stockpiles before production.  It was observed during 

construction that the mixtures with 45% RAP and polymer modified PG 76-22 binder 

(mixes 5 and 6) required more effort to reach the target compaction level. 

The pavement structure for the test sections was designed as a perpetual pavement 

with 560 mm of HMA on top of an aggregate base.  Each mixture was placed in a 50 mm 

thick layer on the previously milled surface.  Performance of the test sections was 

monitored weekly for two years during which time traffic of approximately 9.4 million 

ESALs was applied.  Pavement surface macrotexture results indicated that all RAP 

sections had very good raveling performance.  Some low severity longitudinal cracking 

was observed in the mixture 6 test section that was determined to be reflective from the 

underlying pavement.  Some low severity cracking was also observed in the mixture 1 

test section. Field rutting of the mixture 2 test section was higher than the control section; 

rutting of all other test sections was less than the control section.  Over the two years of 
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testing, roughness of the control mixture and mixture 2 test sections increased somewhat.  

Roughness of the other test sections did not change noticeable over the study period. 

Laboratory testing was also performed on the plant produced mixtures by West et 

al. (2009).  APA rut testing results indicated a similar ranking of mixture performance to 

what was observed in the field; mixtures 5 and 6 had the lowest laboratory rut depths and 

the control mixture had the highest.  Dynamic modulus testing indicated the generally 

expected ranking of stiffness in most cases, with the control mixture being least stiff and 

the 45% RAP mixtures being stiffest; 20% RAP mixtures fell in between.  Strain 

controlled beam fatigue testing was conducted on laboratory conditioned specimens of 

each mixtures; results indicated that the 45% RAP mixtures had the lowest number of 

cycles to failure (failure was defined as 50% reduction in initial stiffness) while the 20% 

RAP mixtures were only slightly worse performing than the control mixture.  Dissipated 

creep strain energy (DCSE) testing was conducted on field cores to generate an estimate 

of potential for top down cracking of the mixtures.  Results indicated that the control 

mixture and all RAP mixtures with polymer modified PG 76-22 binder would likely have 

good resistance to top down cracking.  DCSE results indicated that RAP mixtures with 

PG 67-22 and PG 52-28 binder might be susceptible to top down cracking, but field 

performance of the corresponding test sections was good. 

 
 

2.8 Performance Studies of RAP and Warm Mix 

This section contains pertinent information from studies of warm mixed RAP; 

both laboratory and field studies are included.  The information presented was restricted 

to the warm mix techniques investigated in this study.  Relevant information about the 
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particular warm mix techniques is also included as applicable.  The information is 

organized by topic in the following sections. 

 
 

2.8.1 Sasobit® 

Sasobit® is an organic hydrocarbon based wax produced by the Fischer-Tropsch 

process (SasolWax 2004).  It is manufactured by Sasol Wax GmbH.  It has been used in 

Europe for a number of years and has performed well in service (D’Angelo et al. 2008).  

Above its melting point of 100 C (212 F) Sasobit® reduces the measured asphalt 

viscosity which permits reduction of the mix temperature and promotes asphalt mixing 

and compaction.  Below its melting point Sasobit® solidifies into a lattice structure that 

stiffens the asphalt binder (SasolWax 2004) and (Mallick at al. 2008).  The reduction in 

mix temperature with Sasobit® is thought to reduce binder aging which will help 

compensate for its stiffening effects (Hurley and Prowell 2005b). 

Laboratory investigation of Sasobit’s® effects on volumetric criteria, mix 

stiffness with indirect resilient modulus, rutting potential in the APA, and moisture 

sensitivity with the TSR test and the Hamburg wheel tracking device has been performed 

(Hurley and Prowell 2005b). Three PG binder grades and two different aggregate types 

(granite and limestone) with similar gradations were used at a range of temperatures.  

Volumetric criteria were met in mixes with Sasobit® and air voids were generally 

reduced compared to the control specimens.  Results indicated that the potential for 

rutting was reduced with the use of Sasobit® and the resilient modulus was not 

significantly affected.  Moisture sensitivity was found to be a potential issue with 

Sasobit® due to incomplete aggregate drying at lower mixing temperature. 
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A number of field trials with Sasobit® have been constructed in the United States.  

Hurley and Prowell (2008) reported on two test sections constructed with Sasobit® in 

Milwaukee and St. Louis that mix properties were identical or improved in comparison to 

the virgin controls. The exception being a possibly increased susceptibility to moisture 

damage as indicated by laboratory tests run on the field mixed asphalt.  Two trial 

pavement sections with Sasobit® were placed in late 2006 in Virginia (Diefenderfer et al. 

2007). The mixtures used for the sections contained 20% and 10% RAP.  1.5% Sasobit® 

by total binder weight was added to both mixtures.  No significant changes in volumetric 

properties or rut measurements in the APA were seen. One trial section did not meet the 

TSR requirements but it was thought this was likely due to high stockpile moisture 

conditions and lower mix temperature during production. 

Mallick et al. (2007) investigated use of 100% RAP as a base layer by the 

addition of 2.0% neat PG 64-28 asphalt binder in the laboratory.  Sasobit® at 1.0% and 

1.5% of total asphalt content was tested in 100% RAP at 125 C and compared to 100% 

RAP without Sasobit® at 150 C.  The resulting mixtures were evaluated for workability, 

compactibility, resilient modulus, moisture sensitivity, and indirect tensile strength.  

Workability results indicated that the use of Sasobit® at 125 C either increased the 

workability (mix was less stiff) or was nearly the same as the 150 C mix without 

Sasobit®.  Resilient modulus was measured and no statistical difference was found 

between the 150 C RAP mix and the Sasobit® with RAP mixes.  Tensile strength was 

significantly lower for the 1.0% Sasobit® mix compared to the no Sasobit® mix in the 

dry state and after one freeze-thaw conditioning cycle, but the retained strength values 

were not statistically different. 
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Similar laboratory work performed by Mallick et al. (2008) used 75% RAP with 

Sasobit® and varying grades of additional virgin binder for base courses.  The goal was 

to create mixtures containing 75% RAP with similar performance properties to a control 

mixture that consisted of 75% extracted RAP aggregate mixed with 25% virgin aggregate 

and neat PG 64-28 binder at 150 C (the specified mixing temperature for this binder).  

Tests for air voids, tensile strength, stiffness, and rutting were designated as the 

comparison criteria.  The control mix with PG 64-28 binder had the highest average 

tensile strength (at -10 C) of any of the mixtures while the mix with PG 42-42 binder and 

Sasobit® H8 had the lowest. This indicates a reduction in overall mixture stiffness and 

the potential for low-temperature cracking with the use of a much softer neat asphalt 

binder. Rut depths were less than 4 mm for all mixes.  The seismic moduli stiffness 

results indicated that the mix produced with PG 42-42 binder and Sasobit® H8 had a 

significantly lower modulus than mixtures produced with PG 52-28 binder.  Similar 

levels of performance to conventional HMA for 75% RAP mixtures was possible with 

the use of very soft grades of asphalt binder and Sasobit® H8 warm mix additive.  

Similar air voids and comparable mixture stiffness was observed in the mixtures as well 

as an equal or decreased rutting potential.  Although mix temperatures were intentionally 

not greatly reduced, the addition of Sasobit® H8 to mixes containing RAP produced 

comparable air voids to RAP mixes at standard mix temperature without additive. 

Kristjansdottir et al. (2007) presented a case study in Maryland where Sasobit® 

was used as workability and compaction aid for mixtures with 35 to 45% RAP.  

Production temperatures were 138 to 166 C (280 to 330 F) and compaction temperatures 

were 135 to 154 C (275 to 310 F).  No adverse affects were reported based on laboratory 
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and field data (primarily construction) and the authors note that long term performance 

data is needed to make comparative assessments.  Prowell and Hurley (2007) summarize 

thirteen field test sections that incorporate Sasobit®.  They contained 0 to 45% RAP (6 

with 0% RAP, 5 with 10 to 25% RAP, 1 with 35% RAP, and 1 with 45% RAP).  The 

thirteen projects were a combined 21,300 tons. 

 
 

2.8.2 Evotherm™ 

Evotherm™ 3G is a proprietary formula liquid asphalt additive designed to 

improve coating, mixing, workability and compaction of asphalt mixtures 

(MeadWestvaco 2011).  Laboratory investigation of Evotherm™’s effects on volumetric 

criteria, mix stiffness with indirect resilient modulus, rutting potential in the APA, and 

moisture sensitivity with the TSR test and the Hamburg wheel tracking device has been 

performed (Hurley and Prowell 2006). Two PG binder grades and two different aggregate 

types (granite and limestone) with similar gradations were used at a range of 

temperatures.  Volumetric criteria were met in mixes with Evotherm and air voids were 

generally reduced compared to the control specimens.  Compaction was improved 

relative to HMA at temperatures down to 88 C.  Results indicated that the potential for 

rutting was significantly reduced with the use of Evotherm when used at hot mix 

temperatures, but rutting was significantly increased for Evotherm mixtures at lower 

temperature relative to the HMA control.  Resilient modulus was lower than the control 

mixes in some cases.  Moisture sensitivity was found to be a potential issue with 

Evotherm™ and the limestone aggregate; however a change in Evotherm™ formulation 

by the manufacturer was able to correct the problem. 
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Prowell et al. (2007) examined the laboratory and early life field performance of 

WMA mixtures produced with Evotherm™.  The mixing temperature was 115 C and the 

Evotherm™ mix was successfully compacted at temperatures ranging from 108 C all the 

way down to 96 C.  Laboratory APA testing on specimen of plant produced mixture 

indicated rutting performance comparable to the HMA control mixture while field rutting 

data indicated nearly identical performance between the WMA and HMA.  Laboratory 

TSR moisture susceptibility testing indicated potential problems with the WMA mixtures; 

however TSR testing of cores from the test section did not indicate much difference 

between HMA and WMA TSR results. 

Prowell and Hurley (2007) summarize eighteen field test sections that incorporate 

Evotherm™.  They contained 0 to 30% RAP (8 with 0% RAP, 7 with 10 to 25% RAP, 1 

with 20% RAP, and 2 with 30% RAP).  The eighteen projects were a combined 48,600 

tons.  Prowell and Hurley also stated that over 100,000 tons of WMA produced with 

Evotherm™ had been placed as of 2007. 

Kvasnak et al. (2009) tested laboratory and plant produced 15% RAP mixture 

with Evotherm™ and HMA.  Three measurements of moisture susceptibility were 

investigated, TSR, HLWT, and absorbed energy ratio (analysis technique using indirect 

tensile test data from the TSR test).  Results generally indicated that the WMA might be 

more susceptible to moisture but most of the data passed the test criteria.  The plant 

produced WMA performed better than the laboratory produced mixture but the plant 

produced HMA performed slightly worse than the laboratory mixture. 

 

 



www.manaraa.com

70 

2.8.3 Foam Process 

The foamed warm mix asphalt process uses water to produce asphalt foam at the 

plant; it requires installation of a water injection system to the asphalt input of an asphalt 

plant.  Numerous manufacturers produce suitable water injection systems.  A version of 

the foam warm mix process can be produced with the use of high water content additives 

such as zeolites.  Tao and Mallick (2009) experimented with 100% RAP and zeolite 

additives in the laboratory and observed that the stiff RAP asphalt appeared to hinder the 

foaming process somewhat compared to what was observed for virgin binders. 

A demonstration project conducted in South Carolina using the Double Barrel 

Green System used 50% RAP (Boggs 2008).  The RAP was fractionated into three sizes 

prior to production.   A total of 15,000 tons of warm mixed asphalt containing RAP was 

placed, approximately half as surface course.  Measured field densities were nearly 

identical between the WMA and HMA control section and were reached at temperatures 

as low as 88 C (190 F).  Rutting tests conducted in the APA on plant produced mix had 

lower measured rut depths for WMA than the HMA control (2.9 mm for WMA and 4.4 

mm for HMA). 

A foamed warm mix demonstration project was constructed in Memphis, TN 

(Nelson 2008).  One of the mixes tested was a Mississippi gravel surface specification 

mix.  No difficulties were encountered reaching density at the reduced production and lay 

down temperatures.  Target compaction temperature was 127 C however one truckload of 

mix was also successfully compacted at 110 C.  Another foamed warm mix 

demonstration project was constructed in Florida (Bistor 2008).  The mixture contained 
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30% RAP and was successfully produced at 124 C.  The compacted warm mix had 2% 

lower air voids than the same mixture produced as conventional hot mix. 

Two foamed asphalt mixtures were placed on the surface of a city street in 

Chattanooga, TN in 2007; one of the mixtures contained 50% RAP and the control mix 

had no RAP (Hodo et al. 2009).  The RAP was fractionated into coarse and fine 

stockpiles before production.  Both mixes were successfully placed; the 50% RAP 

mixture was compacted at approximately 132 C and the control mixtures was 

successfully compacted at temperatures as low as 110 C.  In place density of the mix was 

somewhat higher than desired (average 9% air voids for four cores).  No distresses were 

apparent in either mix after one year of traffic.  Recovered binder from the 50% RAP mix 

was a PG 82-16 (continuous grade of 84.3-18.0); virgin binder in the mix was PG 64-22.  

The RAP had a stiffening effect on binder properties but low temperature properties were 

felt to still be reasonable.  The high temperature PG was increased three grades by the 

addition of 50% RAP while the low temperature PG was only changed by one grade. 

Field mix was sampled and brought back to the laboratory for evaluation of 

moisture damage with TSR and with Hamburg testing as well as rutting evaluation in the 

APA.  Results indicated that TSR values were marginal (78 for 0% RAP mix and 82 for 

50% RAP mix); interestingly the 0% RAP mix had higher dry and wet tensile strengths 

than the 50% RAP mix.  Hamburg rut depths were acceptable but average SIPs for both 

mixes were less than the desired 10,000 passes (8,900 for 0% RAP and 8,500 for 50% 

RAP) indicating a potential for moisture damage (Hodo et al. 2009).  APA rutting results 

were good with all mixtures rutting less than 4 mm; interestingly the 50% RAP mix 

rutted slightly more than the 0% RAP (2.4 and 3.9 mm for 0 and 50% RAP respectively). 
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Middleton and Forfylow (2009) evaluated four plant produced foam mixtures 

placed in Canada.  The four 75 blow Marshall designed mixtures produced were: 1) 0% 

RAP virgin mixture; 2) 15% RAP mixture; 3) 15% RAP with 5% recycled shingles 

mixtures; and 4) 50% RAP mixture.  No major differences in any of the mixtures were 

observed in APA rut testing.  TSR testing indicated slightly below passing values for the 

virgin mix but adequate values for all recycled mixtures; recycled mixtures had higher 

indirect tensile strengths and TSR values than the virgin mix.  Resilient modulus testing 

indicated that the recycled mixtures were somewhat stiffer than the virgin mix as would 

be expected but did not indicate any problems with the foaming process.  Production 

temperature for all mixes was about 130 to 135 C; this represented an approximate 

reduction of 24 C from HMA temperatures.  A reduction in energy required for plant 

operation of approximately 24% was observed with the foam warm mix compared to 

conventional hot mix in the same plant. 

Copeland et al. (2010) reported on a field project with 45% fractionated RAP 12.5 

mm NMAS mixture in Florida.  Both HMA and foamed WMA versions of mixture were 

produced.  A soft recycling agent was used as the virgin binder; it was graded PG 52-28.  

Binder testing was performed in conjunction with mixture dynamic modulus and flow 

number testing.  Results indicated that the WMA mixture likely achieved only a partial 

level of blending between RAP asphalt and virgin binder but that the HMA mixture had 

relatively complete level of blending.  The recovered binder properties indicated that the 

WMA mixture did not experience as much aging during plant production as the HMA. 

Abbas and Ali (2011) investigated foamed WMA without RAP in the laboratory.  

A natural gravel and a crushed limestone were evaluated with two binder grades (neat PG 
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64-22 and polymer-modified PG 70-22).  Moisture susceptibility was evaluated with TSR 

and rutting resistance with the APA.  A slight increase in moisture susceptibility and an 

increase in rutting (especially with the neat binder) was observed. 

 
 

2.9 Summary of Literature Review Findings 

 
 

2.9.1 Durability 

Durability (especially raveling and weathering) is an important aspect of asphalt 

mixture performance that has not been widely addressed, especially for dense graded 

mixtures.  The increased stiffness associated with high RAP mixtures is potential cause 

for concern in regards to durability; however a few sources reported adequate durability 

performance from high RAP mixtures in practice (Su et al. 2009, West et al 2009, West 

et al. 2011).  The Cantabro test has been used by several researchers to assess durability 

of OGFC and PFC mixtures and is used by some agencies as mix design tool.  It has 

potential to provide a relative assessment of durability for high RAP mixtures. 

 
 

2.9.2 Non-Load Associated (Thermal) Cracking 

Thermal cracking is a distress mode of asphalt pavements that is primarily due to 

environmental factors; it is most severe in cold climates.  High RAP mixtures are thought 

to be more susceptible to this distress due to increased mixture stiffness at low 

temperatures.  A higher incidence of cracking has been observed for high RAP mixtures 

by some researchers (Shoenberger and Demoss 2005, West et al. 2011).  The BBR 

mixture test is promising for evaluation of high RAP mixture stiffness without need for 
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extraction.  Thermal cracking analysis can likely be performed with BBR data using the 

analysis methods of AASHTO R 49 and Shenoy (2002). 

 
 

2.9.3 Permanent Deformation (Rutting) 

Reduced binder aging associated with lower mixing temperatures of WMA has 

the potential to result in rutting problems in service soon after construction.  Some 

evidence has been reported in literature for increased rutting with WMA (Hurley and 

Prowell 2006, Abbas and Ali 2011); however other researchers have reported adequate 

rutting performance for WMA (Hurley and Prowell 2005b, Prowell et al. 2007).  Rutting 

does not appear to be major issue with high RAP mixtures (Shoenberger and Demoss 

2005, Hossain et al. 1993, Potter and Mercer 1997, Aguiar-Moya et al. 2011).  Limited 

information is available concerning use of high RAP in conjunction with WMA but RAP 

use RAP may offset rutting potential (Mallick et al. 2008, Boggs 2008, Hodo et al. 2009). 

 
 

2.9.4 Moisture Damage 

Damage to asphalt pavements due to moisture is a major cause of pavement 

distress.  The distress is commonly manifested as removal of asphalt binder from the 

aggregate particles (stripping) and physical disintegration of the asphalt mixture.  

Numerous researchers have reported that inclusion of RAP in mixtures can improve 

resistance to moisture damage (Amirkanian and Williams 1993, Castro-Fernandez 1996, 

Al-Qadi et al. 2009, Maupin et al. 2009).  Only one source was found that reported 

reduced performance from RAP (Chen et al. 2007); however the researcher extracted the 

RAP aggregate before testing and thus breaking the strong bond between RAP aggregate 
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and asphalt.  Numerous researchers have reported potentially increased susceptibility to 

moisture damage by WMA (Hurley and Prowll 2005b, Hurley and Prowell 2006, Prowell 

et al. 2007, Diefenderfer et al. 2007, Hurley and Prowell 2008, Kvasnak et al. 2009).  A 

few researchers have investigated high RAP in conjunction with WMA; some have found 

that that RAP generally compensates for the decrease in performance due to WMA 

(Austerman et al. 2009, Middleton and Forfylow 2009, Mogawer et al. 2011a); others 

have found marginal overall performance of high RAP-WMA (Hodo et al. 2009). 

Mogawer et al. (2011b) evaluated the effects of varying laboratory short term 

conditioning times and temperatures on moisture susceptibility of WMA.  Four WMA 

technologies were investigated including water based foaming additive (Advera), two 

wax based additives (one of them Sasobit®) and Evotherm™.  One 9.5 mm NMAS 

gradation and one base binder (PG 64-22) were used.  Nine experimental factor-level 

combinations were evaluated for each WMA technology, consisting of three conditioning 

temperatures (standard 146 C, 129 C and 113 C) and three conditioning times (standard 2 

hr, 4 hr and 8 hr).  The mixing temperature was not specified.  Performance was 

evaluated with HLWT, E* ratio for all mixtures; an adhesive energy test and a repeated 

load fracture test were performed with some of the WMA technologies.  Results indicated 

that longer conditioning times had improved performance and that lower conditioning 

temperatures had decreased performance.  None of the WMA mixtures at the lowest 

conditioning temperature (113 C) passed the HLWT test without anti-strip additives.  The 

results demonstrated that more binder aging results in a better bond with aggregate and 

that insufficient binder aging could result in moisture susceptibility. 
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It has been hypothesized that the potential for moisture damage is at a maximum 

in pavements with about 7 to 11% air voids due to high permeability (Terrel and Al-

Swailmi 1993); high permeability has been measured in 9.5 mm and 12.5 mm NMAS 

mixtures with greater than 7.7%  air voids (Cooley et al. 2001).  DOTs in the 

Southeastern U.S. target 6 to 8% air voids during construction but will allow pavements 

to remain in place with over 9% air voids and as high as 11% in some cases (Table 2.3).  

High air void levels of 11% or more have been measured in actual pavements by many 

researchers (Badaruddin and White 1994, Lu 2005, Seo et al. 2007, Prowell and Brown 

2007).  Conditions ripe for moisture damage are unfortunately common in actual practice.  

Moisture damage and is especially likely at high temperatures and slow rates of loading 

(Williams and Breakah 2010).  Test parameters for a worst case scenario moisture 

damage test should attempt to replicate the high air void levels, high temperatures and 

slow loading rates that are most likely to induce moisture damage. 

The TSR test is commonly used by DOTs to evaluate the potential for moisture 

damage of asphalt mixtures (Mogawer et al. 2011b).  However, TSR results do not always 

correspond to observed field performance (Zaniewski and Visawanathan 2006); Hamburg 

loaded wheel moisture damage testing has been stated to better correspond to field 

performance than TSR testing (Azari 2010).  PURWheel loaded wheel testing has been 

stated to give a better indication of moisture damage potential than TSR testing (Pan and 

White 1999).  On the other hand, moisture damage testing with the APA has not been as 

successful (Cross et al. 2000, Hunter and Ksaibati 2002, West et al. 2004); the Hamburg 

test has been shown to provide better results than the APA (Shiwakoti 2007). 
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2.9.5 Load Associated (Fatigue) Cracking 

Bottom up fatigue cracking of high RAP (stiff) mixes has enough potential to be 

problematic in base or binder pavement layers to be given some consideration.  Generally 

speaking, bottom up fatigue cracking is not a big problem for surface mixtures in a 

properly designed flexible pavement structure.  As discussed in the following paragraphs, 

several researchers have discussed or provided evidence that fatigue cracking in high 

RAP mixtures may not be as big an issue as first thought, even in base or binder layers. 

Huang et al. (2005) summarized two studies where HMA fatigue resistance was 

improved by including up to 30% RAP.  Huang et al. (2005) performed a limited amount 

of finite-element modeling and based on the results, hypothesized that retention of a stiff 

layer of RAP bitumen coating RAP aggregate beneath an outer coating of virgin binder 

due to partial blending would actually reduce stress concentrations and possible improve 

a mixture’s fatigue performance.  Reasoning was that the retained high stiffness (for 

asphalt) RAP bitumen layer at the aggregate surface acted as a buffer between the 

extremely stiff aggregate (relative to asphalt) particles and soft virgin binder film coating. 

Santos et al. (2010) reported better fatigue performance in the laboratory (using a 

Portuguese beam fatigue test method) for mixtures containing 20, 30 and 40% RAP 

compared to a virgin HMA control; results were consistent for both laboratory mixed and 

plant mixed material.  Shu et al. (2008) investigated fatigue performance in the laboratory 

for plant produced mixtures containing 0, 10, 20 and 30% RAP; testing consisted of 

Superpave IDT and flexural beam fatigue (600 microstrain and 10 Hz).  IDT test results 

and several data analysis methods indicated that fatigue life of the mixtures may be 

reduced by inclusion of RAP.  Beam fatigue results and plateau value of dissipated 
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energy data analysis method indicated that RAP mixtures might have lower fatigue life in 

some but not all instances.  Beam fatigue results and failure defined as 50% reduction 

initial stiffness data analysis method indicated that 30% RAP mixture might have longer 

fatigue life than the other mixtures (120,000 cycles to failure compare to 80,000 cycles to 

failure for other mixtures). 

Tabaković et al. (2010) investigated performance of mixtures containing 0, 10, 20 

and 30% RAP; testing consisted of indirect tensile fatigue (British test method) and a 

circular wheel tracking device.  The circular wheel tracker allows for determination of 

crack propagation, permanent deformation, peak strains developed at bottom of the large 

slab specimen (30 by 30 by 5 cm); test parameters were 20 C, 695 kPa contact pressure 

and 3 km/hr speed.  Optimum design asphalt content of the 20 mm mixture (gradation 

was typical of those used in Ireland) was determined according to Marshall procedures 

but the mixtures tested varied slightly from designed optimum asphalt contents to have a 

set amount of virgin asphalt added to each mixture (0% RAP mix was -0.2% of optimum, 

10% RAP was +0.3% of optimum, 20% RAP was +0.3% of optimum, 30% RAP was 

+05% of optimum). 

Indirect tensile results of Tabaković et al. (2010) indicated that 30% RAP 

performed significantly better than all other mixtures with respect to fatigue.  Circular 

wheel tracker results were as follows.  Mixtures with RAP had generally shorter cracks 

than virgin mixture.  Mixtures with 20 and 30% RAP had the least amount of cracking, 

0% RAP had the most and 10% RAP fell in between.  Mixtures with RAP had better 

rutting performance than virgin mixture.  The 30% RAP mixture had best fatigue 

performance of all the mixture with respect to measured strains. 
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Cascione et al. (2011) investigated laboratory properties of plant mixed high RAP 

mixtures; the evaluation included beam fatigue testing.  Four base mixtures (19.0 mm 

NMAS) were produced that contained 5% post consumer recycled asphalt shingles and 

25, 35, or 45% RAP; a 50% RAP mixtures with no shingles was also produced.  Two 

binder mixtures (19.0 mm NMAS) were produced, 5% shingles with 35% RAP and 40% 

RAP with no shingles.  Two surface mixtures (9.5 mm NMAS) were produced, 5% 

shingles with 20% RAP and 25% RAP with no shingles.  The base and binder mixtures 

were designed to be binder rich and fatigue resistant (2% design Va for base mixtures and 

3% design Va for binder mixtures).  All mixtures were HMA with PG 58-22 virgin 

binder.  Fatigue test results indicated that all mixtures would likely have adequate fatigue 

performance except the 5% shingles 45% RAP base mixture. 

Timm et al. (2011) reported on fatigue performance of foamed WMA and 

conventional HMA both containing fractionated 50% RAP placed on the NCAT test 

track.  The three virgin control mixtures were HMA, foamed WMA and Evotherm™ 

WMA.  Each test section consisted of 76 mm thick base course (19.0 NMAS), 64 mm 

thick binder course (19.0 NMAS) and 38 mm thick surface course (9.5 mm NMAS).  

Strain gages installed at the bottom of the asphalt layer were monitored during 

application of approximately four million ESALs of traffic.  The measured strains were 

observed to be strongly temperature dependent with higher strains measured at higher 

temperatures.  Measured data were corrected for construction differences in layer 

thickness and shifted to one of three reference pavement temperatures.   

At the 10 C reference temperature none of the mixtures were statistically 

different.  At the 20 C test temperature the foamed 50% RAP WMA had statistically 
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lower strains than the other mixtures.  At the 43 C reference temperature the control 

mixture had the highest strains, the virgin WMA mixtures were statistically the same and 

lower than the control, and the 50% RAP mixtures (HMA and WMA) had strains 

statistically lower than all other mixtures.  Laboratory beam fatigue testing was also 

performed with plant produced mixture at 800 and 400 microstrain with 20 C test 

temperature (note that the laboratory strain levels were higher than the measured field 

strains at 20 C).  Laboratory test results were extrapolated with a fatigue transfer 

function; results indicated that the high RAP-WMA mixture may have the best 

performance; however no cracking had yet been observed in the field for any mixture. 

Aravind and Das (2007) observed that recycled mixtures had better fatigue 

performance than virgin mixture at low strain rates but that recycled mixtures had 

considerably worse fatigue performance than virgin mixture at high strain rates.  This 

information is promising in light of the findings of Timm et al. (2011) that high RAP-

WMA mixtures may have lower tensile strains in a given pavement structure than 

conventional mixture.  Much of the beam fatigue testing that is performed is done at high 

strain rates (unrepresentative of actual pavement strains) due to speed of testing.  This 

potentially may result in poor fatigue performance results for high RAP mixtures but 

more testing is needed at strain rates representative of actual field conditions. 
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CHAPTER 3 
 

MATERIALS AND MIXTURES 
 
 

3.1 Overview of Materials and Mixtures 

This chapter provides properties of all materials tested as part of this study.  The 

terminology provided in Section 3.2 is utilized throughout the document.  Specimen 

preparation methods are described in Section 3.3.  Properties of all mixtures used in this 

study are provided in Section 3.4. 

 
 

3.2 Terminology 

Aggregate sources are identified with a single letter followed by a dash and a 

number; the letter designates what type of aggregate and the number indicates the 

specific aggregate of that type (e.g. G-1 refers to gravel aggregate source one).  RAP 

sources are identified with a unique designation beginning with the letter R to represent 

RAP source (e.g. R-1 refers to RAP source one).  For cases where other materials were 

used, generic terminology has been incorporated (e.g. gravel would refer to a source other 

than the gravel specifically referred to as G-1). 

All named aggregate and RAP sources utilized in this study are as follows: 

• G-1 Crushed gravel aggregate source 1 

• G-2 Crushed gravel aggregate source 2 

• G-3 Crushed gravel aggregate source 3 
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• G-4 Crushed gravel aggregate source 4 

• L-1 Limestone aggregate source 1 

• L-2 Limestone aggregate source 2 

• L-3 Limestone aggregate source 3 

• L-4 Limestone aggregate source 4 

• S-1 Coarse sand aggregate source 1 

• S-2 Coarse sand aggregate source 2 

• HL-1 Hydrated lime source 1 

• R-1 RAP source 1 

• R-2 RAP source 2 

• R-3 RAP source 3 

• R-4 RAP source 4 

• R-5 RAP source 5 

To identify mixtures used in this experimental program, an identification system 

was set up according to the general format given in Eq. 3.1.  The individual components 

of the identification system are described as follows. 

1-2/3-4 (Eq 3.1) 

1: The first position in the mixture identification code designates the NMAS of the 

aggregate gradation.  Possible values for this label are: 

   9.5: 9.5 mm NMAS gradation 

 12.5: 12.5 mm NMAS gradation 

 19.0: 19.0 mm NMAS gradation 
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2: This portion of the label indicates the percentage of RAP aggregate in the mixture 

as a percentage of the total aggregate.  Possible values for this label are: 

     0: 0% RAP 

   15: 15% RAP 

   25: 25% RAP 

   50: 50% RAP 

   75: 75% RAP 

 100: 100% RAP 

3: This portion of the label indicates the mixture type.  Possible values for this label 

are: 

 AM: Airfield Mixture 

 CM: Control Highway Mixture  

 RM: Recycled Mixture 

4: This portion of the label is a numeric code that indicates the specific mixture of 

that type.  If the number is followed by a lower-case letter, the letter indicates 

slight changes to the same aggregate blend and mixture composition; the slight 

changes may include: asphalt binder grade, mixing method (e.g. plant or 

laboratory mixed), or design traffic level. 

For example, 12.5-0/CM-1 refers to a 12.5 mm NMAS gradation with 0% RAP 

that is the first control mixture.  Likewise, 9.5-25/RM-1 refers to a 9.5 mm NMAS 

gradation with 25% RAP that is the first recycled mixture. 
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3.3 Materials Tested 

 
 

3.3.1 RAP 

Five RAP sources were utilized in this experimental program.  RAP sources R-1, 

R-2, and R-3 were selected to represent the range of possible RAP sources available in 

Mississippi.  RAP source descriptions are provided in the following paragraphs. 

R-1 represents a high traffic mix (85 design gyrations); the material was milled 

from the surface of a 22.5 km stretch of Interstate 55 near Grenada, MS.  The material 

was acquired from a producer’s stockpile in fall 2007.  The material was originally 

placed in 1992.  In general the material was from a 12.5 mm binder course developed 

with Marshall Mix Design.  Within the section milled, both polymer modified and non 

polymer modified binders were used, along with varying amounts of sand. 

R-2 was selected to represent an intermediate traffic mix commonly used on lower 

volume roads and state highways.  The low volume design would currently be 

categorized as a medium traffic mix (65 design gyrations).  The material was milled from 

State Highway 25 in Monroe County, the project was 12 km, and the maximum milling 

depth was 50 mm.  The material was obtained from a producer stockpile in fall 2007. 

R-3 is representative of a typical Mississippi RAP stockpile where a variety of 

materials are present.  In this particular stockpile nearly all of the material was acquired 

from MDOT highways.  The material was obtained from the stockpile in fall 2007. 

R-4 and R-5 were used for verification testing of the approach developed in 

Chapter 5 to estimate RAP absorbed asphalt content.  R-4 was obtained from surface 
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milling of U.S. Highway 49 in Madison County in the summer of 2010.  R-5 was 

obtained from surface milling of U.S. Highway 61 in Warren County in summer 2010. 

Asphalt contents for samples of the R-1, R-2 and R-3 RAP sources were 

determined at the MSU laboratory according to ASTM D 2172 Method A using 

trichloroethylene as the extraction solvent.  Washed gradations (AASHTO T 30) were 

performed on the extracted aggregates from the MSU samples.  Samples of the three 

RAP sources were also sent to the Mississippi department of transportation (MDOT) 

central materials laboratory to check asphalt contents and aggregate gradations.  The 

ignition procedure (AASHTO T 308 Method A) was used to determine asphalt content at 

MDOT.  Washed gradations were performed on solvent extracted aggregate at the 

MDOT laboratory. 

RAP properties are given in Table 3.1 and extracted RAP aggregate gradations 

are shown in Figure 3.1.  Note the high value of sand ratio (SR) for R-3, this likely 

indicates a large percentage of natural sand is present; the MDOT specification for sand 

ratio is 60 or less (MDOT 2006).  The washed gradation on extracted aggregate for R-1 

performed at MSU compared favorably to the results obtained by MDOT.  However a 

laboratory error invalidated the MSU gradation results for RAP sources R-2 and R-3; the 

test was not rerun and the MDOT test results were used instead.  For the R-1 RAP source, 

the washed gradation on extracted aggregate and the combined aggregate properties are 

average values of test data from MSU and MDOT.  For R-2 and R-3 RAP sources, the 

aggregate gradations and combined properties are the MDOT obtained values only.  

Asphalt contents determined by MSU and those determined by MDOT were within 

multi-laboratory precision ranges for all three RAP sources; values reported in Table 3.1 
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are averages of MSU and MDOT test results.  Asphalt content of R-4 and R-5 was only 

determined at MDOT; gradations were not determined. 

An attempt was made to extract the effective asphalt from the RAP and leave the 

majority of the absorbed asphalt for PG grading because it was expected that absorbed 

asphalt within the RAP aggregate would not contribute to blended properties of the 25 

and 50% RAP mixtures.  Three washes of trichloroethylene solvent were used with a 45 

minute soak period for each wash.  Less than all of the RAP surface asphalt was extracted 

using the three wash procedure.   The outer portion of the binder is expected to have aged 

more than the absorbed asphalt so it is expected that the grade of the recovered asphalt 

would have been less if all of the asphalt had been extracted.  For R-1, roughly 3.6% 

asphalt was extracted from the RAP using the three wash procedure. The total asphalt 

content was 5.5% so approximately 1.9% asphalt remained with the RAP.  Note that low 

temperature performance grade is a positive value for RAP sources R-1 and R-3 

indicating very brittle asphalt. 

Crushed gravel and crushed limestone are the two primary coarse aggregate types 

used in Mississippi.  To determine their proportions in RAP, a coarse aggregate sorting 

procedure was developed to estimate the amount of limestone.  The procedure consists of 

visually inspecting and categorizing extracted RAP aggregate.  Extracted aggregate 

washed with water is separated into two fractions: 1) retained on the 4.75 mm sieve; and 

2) passing the 4.75 mm sieve and retained on the 2.36 mm sieve.  Based on visual 

inspection the aggregate was categorized as limestone or gravel (Figure 3.2). 
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Table 3.1 Properties of RAP Materials Tested After Asphalt Extraction 
 
RAP ID R-1a R-2 R-3 R-4 R-5 

Pe
rc

en
t P

as
si

ng
 

25.0 mm 100 100 100 --- --- 
19.0 mm 100 100 100 --- --- 
12.5 mm 96.5 99.8 92.2 --- --- 
9.5 mm 90.0 98.2 82.1 --- --- 
4.75 mm 60.1 73.1 55.5 --- --- 
2.36 mm 41.9 52.8 43.7 --- --- 
1.18 mm 34.1 40.3 38.5 --- --- 
0.60 mm 29.2 33.4 33.2 --- --- 
0.30 mm 19.5 22.9 20.6 --- --- 
0.15 mm 11.8 13.0 11.4 --- --- 
0.075 mm 8.4 9.3 7.3 --- --- 

Gsb 2.483 2.526 2.504 --- --- 
Gsa

 2.600 2.597 2.577 --- --- 
Abs  (%) 1.8 1.1 1.1 --- --- 
LST+4.75  (%) 8.1 28.2 24.6 --- --- 
LST+2.36  (%) 8.6 32.9 24.2 --- --- 
PAC  (%)b 5.5 5.6 5.0 5.6 5.7 
Viscosity  (Pa•s)c 52.9 9.1 26.5 --- --- 
Continuous PG 117.8+1.71 105.8-3.47 112.6+4.36 --- --- 
a)  Aggregate properties for R-1 are average values of all valid test results obtained. 
b)  Avg. value obtained from MSU and MDOT central laboratory.  R-4 and R-5 are 

MDOT results only. 
c)  Tested at MSU according to AASHTO T 316, test temperature was 135 C. 

 
 
 

For the aggregate retained on the 4.75 mm sieve the percentage by mass of 

limestone aggregate on a basis of total aggregate retained on the 4.75 mm sieve was 

determined; the variable LST+4.75 is used to denote this value in Table 3.1.  For all 

aggregate retained on the 2.36 mm sieve (including the portion retained on 4.75 mm 

sieve) the percentage by mass of limestone aggregate on a basis of total aggregate 

retained on the 2.36 mm sieve was determined; the variable LST+2.36 is used to denote this 

value in Table 3.1. 
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Figure 3.1 9.5 mm NMAS 0.45 Power Gradation Plot of RAP Extracted Aggregate 
 
 
 

For example, 1025 g of R-1 extracted coarse aggregate was retained on the 2.36 

mm sieve; of that total, 663g was retained on the 4.75 mm sieve and 362g passed the 4.75 

mm sieve and was retained on the 2.36 mm sieve.  The aggregate sorting procedure 

determined that of the material retained on the 4.75 mm sieve, 53.5g was limestone and 

the remainder was gravel (663g - 53.5g = 609.5g).  This results in a LST+4.75 value of 

8.1% (53.5g / 663g = 8.1%).  The aggregate sorting procedure determined that of the 

362g of aggregate passing the 4.75 mm sieve and retained on the 2.36 mm sieve, 35g was 

limestone and the remainder (362g - 35g = 327g) was gravel.  This results in a LST+2.36 

value of 8.6% [(53.5g+35g) / 1025g = 8.6%]. 
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 a)  Aggregate Retained on 4.75 mm Sieve 
 

 

 b)  Aggregate Passing 4.75 mm and Retained on 2.36 mm Sieve 

 
Figure 3.2 RAP Aggregate Sorting Procedure (R-1 shown) 
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3.3.2 Virgin Aggregates 

Ten virgin aggregates were used for the majority of testing, which were obtained 

from local producers.  Properties of crushed gravel are given in Table 3.2, properties of 

limestone are given in Table 3.3 and properties of sand and hydrated lime are given in 

Table 3.4.  Other aggregates were tested as part of this experimental program in lesser 

quantities (e.g. as part of plant produced mixes).  Those aggregates were given generic 

designations.  Specific details of those aggregates are not provided; only composite 

aggregate blend properties are provided. 

 
 

Table 3.2 Properties of Virgin Crushed Gravel Aggregates Tested 
 
Aggregate ID G-1 G-2 G-2b G-3 G-4 
Size < 12.5 mm  < 12.5 mm  < 12.5 mm  < 19.0 mm  < 19.0 mm  

Pe
rc

en
t P

as
si

ng
 

25.0 mm 100.0 100.0 100.0 100.0 100.0 
19.0 mm 100.0 100.0 100.0 100.0 100.0 
12.5 mm 100.0 100.0 100.0 77.0 86.2 
9.5 mm 92.0 93.9 93.9 58.0 67.2 
4.75 mm 47.0 50.3 50.3 29.0 34.9 
2.36 mm 26.0 28.0 28.0 16.0 20.3 
1.18 mm 16.0 16.6 16.6 11.0 13.0 
0.60 mm 11.0 10.9 10.9 9.0 8.9 
0.30 mm 8.0 7.8 7.8 7.0 6.4 
0.15 mm 7.0 6.0 6.0 5.0 4.9 
0.075 mm 5.2 4.9 0.2 4.0 4.0 

Gsb
 2.395 2.380 2.380 2.391 2.397 

Gsa
 2.625 2.595 2.595 2.611 2.612 

Abs  (%) 3.66 3.48 3.48 3.52 3.43 
Notes:  All crushed gravel aggregates obtained from Scribner Pit in Hamilton, MS. 
 Gravel aggregate G-2b was G-2 aggregate washed over a 0.075 mm sieve to 

remove dust. 
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Table 3.3 Properties of Virgin Limestone Aggregates Tested 
 
Aggregate ID L-1 L-2 L-3 L-3b L-4 
Size #810 #810 Screenings Screenings #7 

Pe
rc

en
t P

as
si

ng
 

25.0 mm 100.0 100.0 100.0 100.0 100.0 
19.0 mm 100.0 100.0 100.0 100.0 100.0 
12.5 mm 100.0 100.0 100.0 100.0 96.8 
9.5 mm 100.0 100.0 100.0 100.0 65.9 
4.75 mm 92.0 94.0 97.3 98.2 8.6 
2.36 mm 68.0 74.9 62.8 68.9 1.7 
1.18 mm 53.0 61.2 38.3 42.6 1.1 
0.60 mm 41.0 52.0 25.5 25.3 0.9 
0.30 mm 27.0 44.2 17.6 13.8 0.9 
0.15 mm 19.0 39.1 12.7 6.5 0.8 
0.075 mm 14.8 10.9 10.0 2.1 0.8 

Gsb
 2.625 2.625 2.666 2.779 2.754 

Gsa
 2.711 2.711 2.768 2.782 2.789 

Abs  (%) 1.21 1.21 1.40 0.03 0.46 
Notes: Limestone aggregates L-1 and L-2 were obtained from Russellville, AL. 
 Limestone aggregates L-3 and L-4 were obtained from a quarry in Calera, AL. 
 Limestone aggregate L-3b was L-3 aggregate washed over a 0.075 mm sieve to 

remove dust. 
 

 
 

Table 3.4 Properties of Virgin Sand Aggregates and Hydrated Lime Tested 
 
Aggregate ID S-1 S-2 HL-1 
Size < 9.5 mm < 9.5 mm --- 

Pe
rc

en
t P

as
si

ng
 

25.0 mm 100.0 100.0 100.0 
19.0 mm 100.0 100.0 100.0 
12.5 mm 100.0 100.0 100.0 
9.5 mm 100.0 100.0 100.0 
4.75 mm 95.0 97.4 100.0 
2.36 mm 82.0 84.6 100.0 
1.18 mm 72.0 74.7 100.0 
0.60 mm 55.0 61.5 100.0 
0.30 mm 21.0 18.3 100.0 
0.15 mm 2.0 2.1 100.0 
0.075 mm 0.5 1.3 100.0 

Gsb
 2.572 2.538 2.300 

Gsa
 2.644 2.640 2.300 

Abs  (%) 1.06 1.52 0.00 
Note: All sand aggregates were obtained from Scribner Pit in Hamilton, MS. 
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3.3.3 Virgin Binders and Warm Mix Additives 

Three virgin binders were used for laboratory prepared mixtures; two PG 67-22, 

and one PG 76-22.  The PG 76-22 and the primary PG 67-22 virgin binder were supplied 

by Ergon Asphalt and Emulsions, Inc. from Vicksburg, MS.  The typical high, 

intermediate, and low PG temperatures of the primary base binder were 68.7, 23.5, and -

24.0 respectively.  A secondary PG 67-22 virgin binder was sampled from the asphalt 

plant that produced one of the control mixtures; it was originally supplied by Hunt 

Refining Company from Tuscaloosa, AL.  The primary PG 67-22 binder was used for 

production of all laboratory mixed asphalt with the following two exceptions.  The 

secondary PG 67-22 binder source was used for the highway control mixture 9.5-15/CM-

4b.  The PG 76-22 (modified with radial SBS polymer) binder was used for highway 

control mixture 9.5-15/CM-4c and as a substitute binder for airfield mixtures 12.5-0/AM-

1 and 12.5-0/AM-13. 

Virgin binder was heated to a mixing temperature of 154 C for PG 67-22 and not 

held at the mixing temperature for more than six hours; the number of re-heat cycles was 

minimized to ensure that properties of the binder were not adversely affected.  The 

mixing temperature for PG 76-22 virgin binder was 188 C; once the mixing temperature 

was achieved, the binder was mixed for one hour with a high shear mixer before use.  

The polymer-modified virgin binder was not held at mixing temperature for more than 

six hours and any remaining binder at the end of the day was discarded. 

Three warm mix additives were used in this experimental program: 1) Sasobit®; 

2) Evotherm™ 3G; and 3) water for foamed asphalt.  For airfield mixtures (Chapter 6) 

Sasobit® was used at a dosage rate of 1.5% based on total virgin binder weight.  For 
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performance tested highway mixtures (Chapters 7 and 8) Sasobit® was used at a dosage 

rate of 1.0% based on total binder weight (including asphalt contributed from RAP).  

Similarly, Evotherm™ 3G was used at a dosage rate of 0.5% based on total virgin binder 

weight for airfield mixtures and 0.5% based on total binder weight for highway mixtures.  

For highway mixtures, the Sasobit® or Evotherm™ 3G added to compensate for the RAP 

asphalt was added based on the total extracted asphalt cement content of the RAP.  Water 

added during foaming was 2% of binder mass and was not considered part of the binder 

mass for calculation of asphalt content; the foaming process is discussed in Section 3.4.1. 

Sasobit® was added to binder according to manufacturer recommendations.  The 

binder was heated to 127 C and a paddle mixer was used to mix in the pellets that were 

slowly added into the binder.  If all the pellets are added at once even dispersion might 

not have occurred.  Once added and mixed, the Sasobit® will not settle in the binder.  To 

compensate for the RAP binder in highway mixtures, additional Sasobit® pellets were 

added immediately before mixing as described in Section 3.4.2. 

Evotherm™ 3G was premixed with virgin binder before use according to 

manufacturer recommendations.  Binder was first heated to mixing temperature (154 C) 

before the liquid Evotherm™ 3G was added and then mixed with a high shear mixer until 

fully incorporated into the binder (approximately 10 minutes based on manufacturer’s 

recommendations).  To compensate for the RAP binder in highway mixtures, the virgin 

binder was overdosed with Evotherm™ 3G so that the final dosage rate once samples 

were mixed would be 0.5% by total asphalt cement weight. 
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3.4 Preparation of Test Specimens 

For laboratory asphalt production, samples of aggregate were batched according 

to aggregate stockpile gradations.  RAP was batched according to the aggregate stockpile 

gradations given in Howard et al. (2009); this resulted in the RAP extracted aggregate 

gradations given in Table 3.1.  For all moisture damage testing (i.e. TSR and PURWheel), 

the virgin aggregate and hydrated lime were mixed with approximately 2% water to 

ensure adequate coating of the aggregate by the hydrated lime. 

For the recycled mixtures in this experimental program, the percentage of RAP in 

the mixture was determined on the basis of percentage of extracted RAP aggregate 

contributed to the total aggregate in the mixture.  This approach was simple to use for 

batching material in the laboratory during mix design and for practical purposes was the 

same value as percentage of the RAP in the final mixture (e.g. a 50% RAP mixture on an 

extracted aggregate to total aggregate basis might be 49.7% RAP on a RAP to total 

mixture basis). 

The virgin aggregate and RAP were heated separately and then combined during 

mixing.  Prior to mixing, virgin aggregate was heated for a minimum of 240 minutes in a 

forced draft oven; typical heating time was overnight.  Prior to mixing, RAP was heated 

for 120 minutes in a forced draft oven at the mixing temperature.  After heating, the 

materials were mixed as described in Section 3.4.2.  Total heating time for the RAP was 

210 minutes prior to compaction (i.e. 120 minutes heating before mixing plus 90 minutes 

of heating during short term conditioning of the mixture). 

In addition to the laboratory preparation method, two preparation methods for 

plant produced asphalt mixture were utilized: 1) field sampled and prompt compaction 
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prior to heat loss; and 2) plant sampled that was reheated prior to compaction.  The first 

plant production method involved sampling of plant mixed material at the paving 

location, either from an asphalt paver or a material transfer vehicle (MTV).  The samples 

were quickly brought to the laboratory in insulated containers and then compacted 

promptly at the field compaction temperature without any additional heating.  For 

compaction of multiple specimens from one sampling trip, the mix was kept in an oven 

set to the measured field mix temperature for not more than one hour.  The second plant 

production method consisted of sampling the plant mixed material at the asphalt plant 

and bringing it back to the laboratory; the mixture was allowed to cool.  At a later time, 

the asphalt mixture was reheated to compaction temperature before compaction. 

 
 

3.4.1 Laboratory Asphalt Foaming Process 

Foamed asphalt was produced with an initial binder temperature of 163 C, which 

reduced to 120 C during foaming and was added to the heated aggregate at this 

temperature.  The laboratory asphalt foaming device utilized for production of specimens 

with foamed asphalt is shown in Figure 3.3a.  It features an automated control system 

that automatically proportions the water and asphalt binder at an operator-selected ratio.  

Figure 3.3b shows a sample of the foamed asphalt (2% water by binder mass). 
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a)  Laboratory Asphalt Foaming Device 

 
b)  Sample of Foamed Asphalt 

 
Figure 3.3 Laboratory Production of Foamed Asphalt 
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3.4.2 Laboratory Mixing 

For airfield control mixtures, the target mixing and compaction temperatures were 

taken from temperature-viscosity charts for the asphalt binder and were 165 C and 146 C 

respectively.  For airfield recycled mixtures, target mixing temperatures were 130 C; 

target short term conditioning and compaction temperatures were 116 C.  The short term 

conditioning time for airfield mixtures was 120 min at the compaction temperature. 

For highway control mixtures, the target mixing and compaction temperatures 

were either taken from the appropriate MDOT mix design or from temperature-viscosity 

charts for the asphalt binder.  For highway recycled mixtures, target mixing, short term 

conditioning and compaction temperatures were the same.  The purpose of using the 

same mixing and compaction temperatures for recycled highway mixtures was to attempt 

to isolate the contribution of RAP bitumen at a specific temperature to the overall mixture 

properties. For all laboratory produced highway mixtures, the standard MDOT short term 

conditioning time of 90 minutes was used at the compaction temperature. 

All laboratory mixing of asphalt was performed with a bucket mixer; two 

capacities of bucket mixer were utilized depending on the size of mixture sample 

required: 1) conventional 19 L capacity; and 2) large 38 L capacity.  The conventional 19 

L capacity mixer was used for preparation of all asphalt mix for Gmm and SGC compacted 

specimens.  The large 38 L capacity mixer was used for preparation of all asphalt mix for 

compaction in the LAC. 

The mixing procedure was the same regardless of the mixer was used.  A heated 

mixing bucket was placed on a scale and the pre-heated virgin aggregate and RAP were 

added to the bucket.  A well was created in the center of the hot aggregate and the 
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appropriate amount of virgin binder was weighed into the mixing bucket.  When 

required, Sasobit® was added to compensate for RAP binder by heating it to just below 

its melting temperature, and placing it into the pool of liquid asphalt formed inside the 

mixing bucket (Figure 3.4).  The bucket was placed in the mixer and the asphalt 

components were mixed continuously for 60 to 90 seconds.  Care was taken to ensure the 

components were fully blended and the aggregate was coated. 

The quantity of asphalt mixture needed for compaction of slab specimens in the 

LAC (≈ 30 kg) could not all be mixed at the same time in the 38 L mixer.  The aggregate 

and RAP for slab specimens was batched in two equal parts (≈ 15 kg) and handled 

separately during heating and mixing.  The first part was mixed according to the 

procedure described above then placed in a 19 L steel pail for short term conditioning.  

The mixing bucket was placed back into an oven for about 5 minutes to reheat and then 

the second batch was mixed using the same procedure.  The second part was added to the 

same 19 L steel pail as the first part of the sample for short term conditioning.  During the 

compaction process care was taken to prevent segregation of the mix by mixing the first 

and second parts of the asphalt mixture sample in the LAC compaction mold. 
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Figure 3.4 Addition of Sasobit® for RAP Mixture 
 

 
 

3.4.3 Compaction of Test Specimens 

Two types of asphalt compaction equipment were utilized: 1) Superpave Gyratory 

Compactor (SGC); and 2) Linear Asphalt Compactor (LAC).  The SGC was used to 

compact standard 150 mm and 100 mm diameter cylinder specimens either with a 

specified compactive effort (i.e. number of gyrations) or to a target height and density.  

All SGC compaction was performed with a Pine Instrument brand compactor that was 

calibrated to 1.25 ± 0.02° by the external angle method. 

Salient features and an overview of operation of the LAC in use at MSU is 

described briefly herein, further details can be found in Doyle and Howard (2011).  

Figure 3.5 shows the LAC and its major components.  The LAC produces rectangular 

slabs of asphalt mixture that are 29.3 by 62.4 cm that can be any target thickness between 

3.8 and 10.2 cm.  For this study, two target slab thickness were utilized: 1) nominal 3.8 

Sasobit® added 
for RAP asphalt 

Virgin asphalt with 
Sasobit® pre-blended to 
1.0% of virgin binder 
weight 

Mixing bucket 
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cm thickness for skid resistance test specimens; and 2) nominal 7.6 cm thickness for 

PURWheel test specimens. 

 
 

 
 
Figure 3.5 Linear Asphalt Compactor (LAC) 
 
 
 

During the LAC compaction process, the compaction mold is moved backward 

and forward beneath a roller attached to the upper frame (Figure 3.5).  Compactive effort 

is applied by a hydraulic cylinder attached to one end of the upper frame; the hydraulic 

pressure is regulated to provide a constant downward force on the upper frame of the 

compactor.  The compactive force of the roller is transmitted to the asphalt mixture 

through a series of vertically aligned steel plates (not shown in Figure 3.5); this results in 

Hydraulic 
Cylinder 

Roller 

Compaction 
Mold 

Upper Frame

Hinge 
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a kneading action during compaction.  The level of compactive effort exerted by the LAC 

can be varied by adjusting the hydraulic system pressure used to operate the hydraulic 

ram and by varying the number of passes of the compaction mold beneath the roller.  For 

all slabs of nominal 7.6 cm thickness the compactive effort parameters were 18 passes 

and 2413 kPa hydraulic system pressure. 

The general compaction process for slabs produced in the LAC is shown in Figure 

3.6.  At the conclusion of the short term conditioning period, the mixture is loaded into 

the pre-heated compaction mold as shown in Figure 3.6a.  The asphalt mixture is spread 

evenly in the mold while taking care to prevent segregation (Figure 3.6b) before a sheet 

of release paper is placed on top followed by a thin steel sheet; the purpose of the steel 

sheet is to distribute the weight of the compaction plates and ensure a smooth surface to 

the final compacted slab.  Next, the vertically aligned compaction plates are lowered on 

top of the loose asphalt mixture.  The upper frame of the LAC is brought down and 

pinned to the hydraulic cylinder (Figure 3.6c).  After compaction is complete, the upper 

frame is unpinned, the vertical plates are removed, and the detachable portion of the 

compaction mold is removed to allow removal of the compacted slab.  An example final 

compacted slab is seen in Figure 3.6d; the exposed corner of each slab is marked as a 

reference corner for to identify the slab’s orientation during compaction. 
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  a)  Loading Mix into Compaction Mold       b)  Leveling of Mix in LAC 
 
 
 
 
 
 
 
 
 
 
 
 
 

  c)  LAC Ready for Compaction    d)  Compacted Slab 

 
Figure 3.6 LAC Slab Compaction Process 

 
 
 

3.4.4 Sawing of Test Specimens 

Specimens compacted to 150 mm diameter and nominal 115 mm height with the 

SGC were sawn to produce test specimens for BBR mixture testing.  Two major steps 

were performed to produce test specimens: 1) sawing into rectangular blocks; and 2) 

sawing of rectangular blocks into final test specimens.  Test specimens were produced 

from the interior of SGC compacted specimens as illustrated schematically in Figure 3.7. 

Reference corner 
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Figure 3.7 Schematic of BBR Specimen Preparation Method (Not to Scale) 
 
 

During step 1, a masonry saw was used to remove horizontal slices 12.5 mm thick 

(top and bottom) as seen in Figure 3.8a and 3.8b; these slices were discarded.  Four 

vertical cuts were then made to produce a rectangular block approximately 115 mm 

square (Figure 3.8c to Figure 3.8e).  The resulting block was then sliced horizontally into 

two blocks approximately 50 mm thick; the final product is seen in Figure 3.8f.  The final 

blocks were marked such that the face that was originally the interior of the compacted 

specimens was evident. 

During step 2, BBR mixture beams 6 mm by 12 mm by 115 mm were produced as 

shown in Figure 3.9.  Prepared rectangular blocks from the first sawing step were cut 

with a Buehler Delta AbrasiMet® precision abrasive saw utilizing a 25 cm diameter 2 

mm thick diamond blade.  Six vertical cuts were made in the block such as to produce 

five slices 12 mm wide (Figure 3.9a and Figure 3.9b). 
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  a)  Cutting of 12.5 mm thick slice  b)  Top and bottom slices removed 
 
 
 
 
 
 
 
 
 
 
 
  c)  Marking for vertical perimeter cuts d)  Cutting vertical slices around perimeter 
 
 
 
 
 
 
 
 
 
 
 
  e)  115-mm x 115-mm rectangular block  f)  Final 115 mm x 115 mm x 50 mm blocks 

 
Figure 3.8 Step 1-Rectangular Block Preparation for BBR Specimen Production 
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  a)  Vertical cuts b)  Five vertical 12 mm wide slices 
 

  

  c)  Horizontal cuts d)  Final mixture beam specimen 

 
Figure 3.9 Step 2-Preparation of BBR Specimens from Rectangular Blocks 

 
 
 
Each of the 12 mm wide vertical slices was then turned on its side and cut to 

produce 6 mm thick beams (Figure 3.9c).  Two cuts were taken to produce two mixture 

beams per vertical slice.  A final prepared mixture beam specimen is shown in Figure 

3.9d.  Twenty mixture beams can be cut from one gyratory specimen.  The 6 mm 

thickness of the mixture beam corresponds to a vertical dimension in the original 

compacted specimen.  The 12 mm width of the mixture beam corresponds to a horizontal 

dimension in the original compacted specimen. 

115 mm length 

6 mm thick 12 mm 
wide 
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3.5 Mixtures Tested 

Four categories of mixtures were evaluated as part of this study: 1) 100% RAP 

mixtures; 2) airfield surface mixtures; 3) highway surface mixtures; and 4) highway base 

mixtures.  Properties of the mixtures tested are given in the following sections. 

 
 

3.5.1 100% RAP Mixtures 

100% RAP mixtures were designed in the laboratory to 4% air voids according to 

the conventional Superpave design method for RAP sources R-1, R-2 and R-3.  The 

design compactive effort for 100% RAP mixtures was 65 gyrations.  As noted in Section 

3.3.1, the sand ratio for the R-3 RAP aggregate gradation is especially high and would not 

be permitted as a standalone gradation.  This mixture was investigated to determine the 

effect of testing a mixed RAP source that would not have been functioning in a pavement 

in the proportions of the stockpile.  Properties of the designed 100% RAP mixtures are 

given in Table 3.5.  Gradations of the 100% RAP mixtures are those of the respective 

RAP aggregates (Table 3.1 and Figure 3.1). 
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Table 3.5 Properties of 100% RAP Recycled Mixtures with 4% Air Voids 
 
Mixture ID 9.5-100/RM-1 9.5-100/RM-2 12.5-100/RM-3 
Ndes 65 65 65 
Virgin Binder Grade PG 67-22 PG 67-22 PG 67-22 
WMA Sasobit® 1.0% Sasobit® 1.0% Sasobit® 1.0% 
Mix Temp (C) 116 116 116 
Comp Temp (C) 116 116 116 
NMAS 9.5 mm 9.5 mm 12.5 mm 
RAP (%) 100 100 100 
RAP Source R-1 R-2 R-3 
PAC = Pb (%)  7.4 6.8 6.4 
Pb(R) (%) 5.4 5.6 5.0 
Pbe(V) (%) 2.0 1.2 1.4 
Gmm 2.317 2.370 2.381 
Gse 2.574 2.619 2.614 

 
 
 

3.5.2 Airfield Surface Mixtures 

Airfield surface mixtures were designed in the laboratory to 4% air voids 

according to Superpave.  The design compactive effort was 75 gyrations for all airfield 

mixtures.  Properties of all airfield mixtures are given in the following sections.  All 

gradations had a nominal maximum aggregate size (NMAS) of 12.5 mm.  The gradations 

were designed to in general meet specifications used for airfield surface mixtures.  The 

job mix formula (JMF) requirements of Unified Facilities Guide Specification UFGS-32 

12 15 (USACE 2010) were the specifications considered herein.  Slight gradation 

deviations (e.g. for mixtures 12.5-0/AM-13 to 12.5-0/AM-16 the gradation of the 1.18 mm 

sieve was 3% outside the specification) occurred in a few instances to preserve 

uniformity between gradations for performance comparisons while using substantial 

amounts of RAP, but these deviations from the specifications are within acceptable 
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tolerance limits.  Properties of airfield surface mixtures are given in the following tables 

(Tables 3.6 to 3.11) organized by RAP content and primary virgin aggregate type. 

 
 

Table 3.6 Properties of 12.5 mm NMAS 0% RAP Limestone Virgin Aggregate 
Airfield Mixtures 

 
Mixture ID 12.5-0/AM-1 12.5-0/AM-2 12.5-0/AM-3 12.5-0/AM-4
Ndes 75 75 75 75 
Binder Grade PG 67-22 PG 67-22 PG 67-22 PG 67-22 
WMA None Sasobit 1.0% Evotherm 0.5% Foam 
Mix Temp (C) 165 130 130 130 
Comp Temp (C) 146 116 116 116 

Pe
rc

en
t P

as
si

ng
 

25.0 mm 100.0 100.0 100.0 100.0 
19.0 mm 100.0 100.0 100.0 100.0 
12.5 mm 99.0 99.0 99.0 99.0 
9.5 mm 89.8 89.8 89.8 89.8 
4.75 mm 70.7 70.7 70.7 70.7 
2.36 mm 44.5 44.5 44.5 44.5 
1.18 mm 27.1 27.1 27.1 27.1 
0.60 mm 17.9 17.9 17.9 17.9 
0.30 mm 12.6 12.6 12.6 12.6 
0.15 mm 9.1 9.1 9.1 9.1 
0.075 mm 7.2 7.2 7.2 7.2 

L-3 Limestone (%)  70 70 70 70 
L-4 Limestone (%)  30 30 30 30 
RAP (%) 0 0 0 0 
RAP Source 0 0 0 0 
Pb(R) (%) 0 0 0 0 
Gsb 2.692 2.692 2.692 2.692 
Gsa

 2.774 2.774 2.774 2.774 
Abs (%) 1.12 1.12 1.12 1.12 
PAC = Pb (%) 4.9 4.9 4.8 5.0 
Pbe (%) 4.1 4.1 3.9 4.3 
Pba(s) (%) 0.9 0.9 0.9 0.8 
Gmm 2.545 2.545 2.553 2.537 
Gse 2.754 2.754 2.759 2.749 
VMA 13.9 14.1 14.0 14.0 
VFA 69.3 68.5 65.9 72.1 
P200/Pbe 1.8 1.8 1.8 1.7 
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Table 3.7 Properties of 12.5 mm NMAS 0% RAP Crushed Gravel Virgin Aggregate 
Airfield Mixtures 

 
Mixture ID 12.5-0/AM-13 12.5-0/AM-14 12.5-0/AM-15 12.5-0/AM-16
Ndes 75 75 75 75 
Binder Grade PG 67-22 PG 67-22 PG 67-22 PG 67-22 
WMA None Sasobit 1.0% Evotherm 0.5% Foam 
Mix Temp (C) 165 130 130 130 
Comp Temp (C) 146 116 116 116 

Pe
rc

en
t P

as
si

ng
 

25.0 mm 100.0 100.0 100.0 100.0 
19.0 mm 100.0 100.0 100.0 100.0 
12.5 mm 94.5 94.5 94.5 94.5 
9.5 mm 84.4 84.4 84.4 84.4 
4.75 mm 52.8 52.8 52.8 52.8 
2.36 mm 35.1 35.1 35.1 35.1 
1.18 mm 25.4 25.4 25.4 25.4 
0.60 mm 19.3 19.3 19.3 19.3 
0.30 mm 12.1 12.1 12.1 12.1 
0.15 mm 8.8 8.8 8.8 8.8 
0.075 mm 5.6 5.6 5.6 5.6 

G-2 Gravel (%) 41.0 41.0 41.0 41.0 
G-4 Gravel (%) 40.0 40.0 40.0 40.0 
L-2 Limestone (%) 8.0 8.0 8.0 8.0 
S-2 Sand (%) 10.0 10.0 10.0 10.0 
HL-1 Lime (%) 1.0 1.0 1.0 1.0 
RAP (%) 0 0 0 0 
RAP Source 0 0 0 0 
Pb(R) (%) 0 0 0 0 
Gsb 2.419 2.419 2.419 2.419 
Gsa

 2.612 2.612 2.612 2.612 
Abs (%) 3.05 3.05 3.05 3.05 
PAC = Pb (%) 6.6 6.0 6.0 6.5 
Pbe (%) 5.8 5.4 5.4 5.7 
Pba(s) (%) 0.9 0.7 0.7 0.8 
Gmm 2.262 2.269 2.269 2.261 
Gse 2.471 2.458 2.458 2.466 
VMA 16.0 15.9 16.1 16.0 
VFA 76.2 71.1 70.1 75.7 
P200/Pbe 1.0 1.0 1.0 1.0 
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Table 3.8 Properties of 12.5 mm NMAS 25% RAP Limestone Virgin Aggregate 
Airfield Mixtures 

 
Mixture ID 12.5-0/AM-5 12.5-0/AM-6 12.5-0/AM-7 12.5-0/AM-8
Ndes 75 75 75 75 
Binder Grade PG 67-22 PG 67-22 PG 67-22 PG 67-22 
WMA None Sasobit 1.0% Evotherm 0.5% Foam 
Mix Temp (C) 165 130 130 130 
Comp Temp (C) 146 116 116 116 

Pe
rc

en
t P

as
si

ng
 

25.0 mm 100.0 100.0 100.0 100.0 
19.0 mm 100.0 100.0 100.0 100.0 
12.5 mm 98.2 98.2 98.2 98.2 
9.5 mm 87.3 87.3 87.3 87.3 
4.75 mm 61.4 61.4 61.4 61.4 
2.36 mm 39.2 39.2 39.2 39.2 
1.18 mm 26.1 26.1 26.1 26.1 
0.60 mm 18.9 18.9 18.9 18.9 
0.30 mm 13.1 13.1 13.1 13.1 
0.15 mm 8.9 8.9 8.9 8.9 
0.075 mm 6.8 6.8 6.8 6.8 

L-3 Limestone (%) 45.0 45.0 45.0 45.0 
L-4 Limestone (%) 30.0 30.0 30.0 30.0 
RAP (%) 25.0 25.0 25.0 25.0 
RAP Source R-1 R-1 R-1 R-1 
Pb(R) (%) 5.5 5.5 5.5 5.5 
Gsb 2.643 2.643 2.643 2.643 
Gsa

 2.730 2.730 2.730 2.730 
Abs (%) 1.23 1.23 1.23 1.23 
PAC = Pb (%) 5.3 5.3 5.3 5.3 
Pbe (%) 4.4 4.4 4.4 4.4 
Pba(s) (%) 1.0 1.0 1.0 1.0 
Gmm 2.495 2.495 2.495 2.495 
Gse 2.711 2.711 2.711 2.711 
VMA 13.6 13.7 13.8 13.7 
VFA 75.3 74.8 74.2 74.8 
P200/Pbe 1.5 1.5 1.5 1.5 
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Table 3.9 Properties of 12.5 mm NMAS 25% RAP Crushed Gravel Virgin 
Aggregate Airfield Mixtures 

 
Mixture ID 12.5-0/AM-17 12.5-0/AM-18 12.5-0/AM-19 12.5-0/AM-20
Ndes 75 75 75 75 
Binder Grade PG 67-22 PG 67-22 PG 67-22 PG 67-22 
WMA None Sasobit 1.0% Evotherm 0.5% Foam 
Mix Temp (C) 165 130 130 130 
Comp Temp (C) 146 116 116 116 

Pe
rc

en
t P

as
si

ng
 

25.0 mm 100.0 100.0 100.0 100.0 
19.0 mm 100.0 100.0 100.0 100.0 
12.5 mm 95.2 95.2 95.2 95.2 
9.5 mm 86.2 86.2 86.2 86.2 
4.75 mm 53.9 53.9 53.9 53.9 
2.36 mm 35.7 35.7 35.7 35.7 
1.18 mm 26.4 26.4 26.4 26.4 
0.60 mm 20.8 20.8 20.8 20.8 
0.30 mm 14.0 14.0 14.0 14.0 
0.15 mm 9.9 9.9 9.9 9.9 
0.075 mm 6.7 6.7 6.7 6.7 

G-2 Gravel (%) 35.0 35.0 35.0 35.0 
G-4 Gravel (%) 28.0 28.0 28.0 28.0 
L-2 Limestone (%) 6.0 6.0 6.0 6.0 
S-2 Sand (%) 5.0 5.0 5.0 5.0 
HL-1 Lime (%) 1.0 1.0 1.0 1.0 
RAP (%) 25.0 25.0 25.0 25.0 
RAP Source R-1 R-1 R-1 R-1 
Pb(R) (%) 5.5 5.5 5.5 5.5 
Gsb 2.430 2.430 2.430 2.430 
Gsa

 2.607 2.607 2.607 2.607 
Abs (%) 2.82 2.82 2.82 2.82 
PAC = Pb (%) 6.6 6.4 6.5 6.3 
Pbe (%) 5.5 5.6 5.7 5.3 
Pba(s) (%) 1.2 0.9 0.9 1.0 
Gmm 2.286 2.276 2.273 2.286 
Gse 2.501 2.480 2.480 2.489 
VMA 15.7 15.7 16.0 15.6 
VFA 74.1 75.6 75.2 72.5 
P200/Pbe 1.2 1.2 1.2 1.3 
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Table 3.10 Properties of 12.5 mm NMAS 50% RAP Limestone Virgin Aggregate 
Airfield Mixtures 

 
Mixture ID 12.5-0/AM-9 12.5-0/AM-10 12.5-0/AM-11 12.5-0/AM-12
Ndes 75 75 75 75 
Binder Grade PG 67-22 PG 67-22 PG 67-22 PG 67-22 
WMA None Sasobit 1.0% Evotherm 0.5% Foam 
Mix Temp (C) 165 130 130 130 
Comp Temp (C) 146 116 116 116 

Pe
rc

en
t P

as
si

ng
 

25.0 mm 100.0 100.0 100.0 100.0 
19.0 mm 100.0 100.0 100.0 100.0 
12.5 mm 97.6 97.6 97.6 97.6 
9.5 mm 88.2 88.2 88.2 88.2 
4.75 mm 61.1 61.1 61.1 61.1 
2.36 mm 41.0 41.0 41.0 41.0 
1.18 mm 29.4 29.4 29.4 29.4 
0.60 mm 22.4 22.4 22.4 22.4 
0.30 mm 14.6 14.6 14.6 14.6 
0.15 mm 8.9 8.9 8.9 8.9 
0.075 mm 6.2 6.2 6.2 6.2 

L-3 Limestone (%) 15.0 15.0 15.0 15.0 
L-3b Limestone (%) 15.0 15.0 15.0 15.0 
L-4 Limestone (%) 20.0 20.0 20.0 20.0 
RAP (%) 50.0 50.0 50.0 50.0 
RAP Source R-1 R-1 R-1 R-1 
Pb(R) (%) 5.5 5.5 5.5 5.5 
Gsb 2.603 2.603 2.603 2.603 
Gsa

 2.687 2.687 2.687 2.687 
Abs (%) 1.23 1.23 1.23 1.23 
PAC = Pb (%) 5.9 6.1 6.1 6.1 
Pbe (%) 5.0 5.2 5.2 5.2 
Pba(s) (%) 0.9 0.9 0.9 0.9 
Gmm 2.437 2.430 2.430 2.430 
Gse 2.665 2.665 2.665 2.665 
VMA 15.6 16.5 16.4 15.8 
VFA 73.1 70.9 71.8 74.8 
P200/Pbe 1.2 1.2 1.2 1.2 
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Table 3.11 Properties of 12.5 mm NMAS 50% RAP Crushed Gravel Virgin 
Aggregate Airfield Mixtures 

 
Mixture ID 12.5-0/AM-21 12.5-0/AM-22 12.5-0/AM-23 12.5-0/AM-24
Ndes 75 75 75 75 
Binder Grade PG 67-22 PG 67-22 PG 67-22 PG 67-22 
WMA None Sasobit 1.0% Evotherm 0.5% Foam 
Mix Temp (C) 165 130 130 130 
Comp Temp (C) 146 116 116 116 

Pe
rc

en
t P

as
si

ng
 

25.0 mm 100.0 100.0 100.0 100.0 
19.0 mm 100.0 100.0 100.0 100.0 
12.5 mm 95.2 95.2 95.2 95.2 
9.5 mm 86.5 86.5 86.5 86.5 
4.75 mm 54.5 54.5 54.5 54.5 
2.36 mm 36.3 36.3 36.3 36.3 
1.18 mm 27.6 27.6 27.6 27.6 
0.60 mm 22.6 22.6 22.6 22.6 
0.30 mm 16.1 16.1 16.1 16.1 
0.15 mm 11.3 11.3 11.3 11.3 
0.075 mm 6.7 6.7 6.7 6.7 

G-2b Gravel (%) 22.0 22.0 22.0 22.0 
G-4 Gravel (%) 22.0 22.0 22.0 22.0 
L-2 Limestone (%) 5.0 5.0 5.0 5.0 
S-2 Sand (%) 0.0 0.0 0.0 0.0 
HL-1 Lime (%) 1.0 1.0 1.0 1.0 
RAP (%) 50.0 50.0 50.0 50.0 
RAP Source R-1 R-1 R-1 R-1 
Pb(R) (%) 5.5 5.5 5.5 5.5 
Gsb 2.436 2.436 2.436 2.436 
Gsa

 2.602 2.602 2.602 2.602 
Abs (%) 2.78 2.78 2.78 2.78 
PAC = Pb (%) 6.8 7.0 7.1 6.7 
Pbe (%) 5.5 5.7 5.8 5.5 
Pba(s) (%) 1.4 1.3 1.3 1.2 
Gmm 2.293 2.286 2.283 2.291 
Gse 2.516 2.515 2.5151 2.510 
VMA 15.6 15.8 16.4 15.8 
VFA 75.2 77.5 75.4 73.8 
P200/Pbe 1.2 1.2 1.2 1.2 
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3.5.3 Highway Surface Mixtures 

 
 

3.5.3.1 Control Mixtures 

Control highway surface mixture properties are given in Table 3.12.  Initially a 

0% RAP control mixture was developed having a virgin aggregate gradation matching 

that of the high RAP mixtures as closely as possible.  This mixture is identified in Table 

3.12 as 9.5-0/CM-1.  VMA and dust to effective binder ratio values for this mixture are 

out of MDOT allowable ranges due to the high dust content of the gradation. 

Three current practice control mixtures were obtained and tested as part of this 

experimental program; they were selected to encompass a performance range of current 

practice rehabilitation mixtures.  One 50 design gyration mixture and two 85 design 

gyration mixtures were selected.  One of the 85 gyration mixtures contained neat binder 

and the other contained polymer-modified binder.  Properties of MDOT approved control 

mixtures 9.5-15/CM-2, 9.5-15/CM-3, and 9.5-15/CM-4a are provided in Table 3.12 and 

were taken directly from the mix design sheets. 

The 50 gyration control mixture (9.5-15/CM-2) was obtained from a city street 

overlay project in Starkville, MS.  All mix was sampled on consecutive days in June 

2010.  The 50 gyration mix was conventional HMA; target overlay thickness was 3.8 cm. 

To investigate the properties of current practice 85 gyration mixtures containing 

polymer-modified binder, control mixture 9.5-15/CM-3 was obtained.  This mixture was 

sampled directly from the asphalt plant in September 2010, placed in metal buckets and 

returned to the MSU laboratory; the mix was then re-heated and compacted at a later 

date.  The mix with polymer-modified PG 76-22 binder was being produced at the plant 
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as warm mix using foaming technology; the material exited the plant at approximately 

132 C and was field compacted at approximately 121 C.  Typical MDOT procedure for 

compaction of reheated mix that was originally produced as foamed warm mix is to 

compact at a temperature near what would be the hot mix compaction temperature for the 

mix.  This procedure was followed for compaction of reheated 9.5-15/CM-3 mixture; a 

temperature of 138 C was utilized.  The mix was being used for isolated sections of mill 

and repair near Tupelo MS; the placement thickness was approximately 3.8 cm.   

For the second control mixture an 85 gyration mix where PG 67-22 was being 

substituted for polymer-modified binder was selected.  This mix (9.5-15/CM-4a) was 

being used for an overlay project on U.S. Highway 45 near West Point, MS.  All the mix 

was sampled on consecutive days, in November 2009 from the paving location.  The 85 

gyration mix with neat PG 67-22 binder was conventional hot mix and the target overlay 

thickness was 5 cm. 

At the same time 9.5-15/CM-4a was being produced, aggregate and RAP was 

sampled from the stockpiles for later use in producing laboratory specimens of the same 

mix for comparison to the plant mixed asphalt.  Neat PG 67-22 asphalt binder was also 

sampled from the plant for use in mixture 9.5-15/CM-4b as previously mentioned in 

Section 3.3.3.  A stock PG 76-22 was used to produce mixture 9.5-15/CM-4c in the 

laboratory. 
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Table 3.12 Properties of 9.5 mm NMAS Control Highway Surface Mixtures 
 

Mixture ID 
9.5-0/ 
CM-1 

9.5-15/ 
CM-2 

9.5-15/ 
CM-3 

9.5-15/ 
CM-4a 

9.5-15/ 
CM-4b 

9.5-15/ 
CM-4c 

9.5-15/
CM-5-28

Prep Methoda 1 2 3 2 1 1 2 or 3 
Design Traffic MT ST HT HT HT HT varied 
Ndes 65 50 85 85 85 85 varied 
Binder Grade 67-22 67-22 76-22 67-22 67-22 76-22 varied 
WMA none none foamb none none none none 
Mix Temp (C) 154 157 132 160 154 166 varied 
Comp Temp (C) 146 field 138 field 146 154 varied 

Pe
rc

en
t P

as
si

ng
 

25.0 mm 100 100 100 100 100 100 100 
19.0 mm 100 100 100 100 100 100 100 
12.5 mm 100 100 100 100 100 100 varied 
9.5 mm 94.6 92.4 95.9 96.1 96.1 96.1 varied 
4.75 mm 62.2 --- --- --- --- --- varied 
2.36 mm 41.6 40.1 41.0 37.1 37.1 37.1 varied 
1.18 mm 30.6 --- --- --- --- --- varied 
0.60 mm 22.9 --- --- --- --- --- varied 
0.30 mm 14.4 --- --- --- --- --- varied 
0.15 mm 10.1 --- --- --- --- --- varied 
0.075 mm 7.8 5.5 6.1 6.0 6.0 6.0 varied 

Gravel (%) 67 (G-1) 75 43 37 37 37 varied 
Limestone (%) 22 (L-1) 0 31 37 37 37 varied 
Sand (%) 10 (S-1) 9 10 10 10 10 varied 
Hyd. Lime (%) 1 (HL-1) 1 1 1 1 1 varied 
RAP (%) 0 15 15 15 15 15 varied 
Pb(R) (%) 0 4.6 5.5 5.6 5.6 5.6 varied 
Gsb 2.458 2.533 2.480 2.518 2.518 2.518 varied 
Gsa

 2.642 2.634 2.591 2.658 2.658 2.658 varied 
Abs (%) 2.82 1.52 1.73 2.08 2.08 2.08 varied 
PAC = Pb (%) 5.70 6.25 5.80 5.80 5.80 5.80 varied 
Pb(V) (%) 5.70 5.57 4.98 4.96 4.96 4.96 varied 
Gmm 2.339 2.362 2.332 2.367 2.367 2.367 varied 
Gse 2.533 2.585 2.526 2.569 2.569 2.569 varied 
VMA 14.5 16.0 15.0 15.0 15.0 15.0 varied 
VFA 72.4 75.0 73.3 73.3 73.3 73.3 varied 
P200/Pbe 1.7 1.0 1.2 1.2 1.2 1.2 varied 

a)  Preparation methods were as follows: 
1. Laboratory mixed and short term aged according to standard procedure.  
2. Plant mixed, field sampled, transported in insulated containers, compacted 

immediately. 
3. Plant mixed, plant sampled, brought to laboratory, reheated prior to compaction. 

b)  Original mixture was foamed but it was re-heated prior to compaction. 
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Additional control mixtures were required for Cantabro durability testing.  

Quality control (QC) specimens of plant produced mixtures were obtained from a local 

asphalt plant and tested at MSU.  Additionally, quality assurance (QA) specimens of a 

range of asphalt mixture types from around the state prepared at the MDOT central 

materials laboratory were tested at MDOT.  Details of these mixtures are given in Table 

3.13.  Plant mixtures 9.5-15/CM-5 and 9.5-15/CM-6 were composed of the same 9.5 mm 

gradation as control mixture 9.5-15/CM-4a.  The only differences were the design 

compactive efforts and therefore the total asphalt contents of the mixtures.  In contrast to 

the 5.8% total design asphalt content of control mixture 9.5-15/CM-4a, the design total 

asphalt content of the 50 gyration mixture 9.5-15/CM-5 was 6.2% and the design total 

asphalt content of the 65 gyration 9.5-15/CM-6 mixture was 6.0%.  Twenty-two mixes 

were compacted and tested at the MDOT central laboratory, and properties of these 

mixtures are given in Table 3.13 (control mixtures 7 to 28). 
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Table 3.13 Properties of Plant Mixed 9.5 mm NMAS Control Highway Surface 
Mixtures 5 to 28 

 
 Binder PAC = Pb  Aggregate Components (%) 
Mixture ID Grade (%) Ndes Gravel Limestone Sand RAP 
9.5-15/CM-5 67-22 6.2 50 37 37 10 15 
9.5-15/CM-6 67-22 6.0 65 37 37 10 15 
9.5-15/CM-7 76-22 5.4 85 29 50 5 15 
9.5-15/CM-8 76-22 5.1 85 29 50 5 15 
9.5-10/CM-9 76-22 5.5 85 79 5 5 10 
9.5-15/CM-10 76-22 5.5 85 50 24 10 15 
9.5-15/CM-11 76-22 6.2 85 40 34 10 15 
9.5-15/CM-12a 76-22 5.4 85 75.5 0 7 15 
9.5-15/CM-13 76-22 5.8 85 45 7 32b 15 
9.5-15/CM-14 76-22 5.5 85 61 20 3 15 
9.5-15/CM-15 67-22 6.0 85 68 9 7 15 
9.5-15/CM-16 67-22 6.1 65 37 37 10 15 
9.5-15/CM-17 67-22 5.6 65 52 6 26b 15 
9.5-15/CM-18 67-22 5.3 65 50 18 16b 15 
9.5-15/CM-19 67-22 5.5 65 31 50 3 15 
9.5-15/CM-20 67-22 6.4 65 40 20 24b 15 
9.5-10/CM-21 67-22 5.7 65 34 46 9 10 
9.5-15/CM-22a 67-22 5.8 65 74 0 8 15 
9.5-0/CM-23 67-22 5.8 50 40 50 9 0 
9.5-10/CM-24 67-22 5.6 50 64 10 10 10 
9.5-10/CM-25 67-22 5.4 50 29 45 10 10 
9.5-6/CM-26 67-22 5.3 50 28 50 6 6 
9.5-10/CM-27 67-22 6.4 50 37 37 10 10 
9.5-10/CM-28 67-22 5.2 50 49 25 10 10 
Notes:  All mixtures contained 1% hydrated lime.  CM-5 and CM-6 were prepared with 
method 2 and mixtures CM-7 to CM-28 with method 3. 
a)  Contained dust. 
b)  Contained manufactured sand. 

 
 
 

3.5.3.2 25 and 50% RAP Mixtures 

Four recycled mixtures containing either 25 or 50% RAP were designed in the 

laboratory; their properties are given in Table 3.14.  Due to difficulty meeting gradation 

requirements, RAP source R-3 was not utilized for 25 or 50% RAP mixtures.  When 

determining virgin aggregate gradations, minimum aggregate stockpile percentages of 

5% were used to align with cold feed limitations of asphalt plants.  For the four recycled 
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mixtures, the same virgin aggregate stockpile percentages were used with each RAP 

source at the 25% and 50% RAP contents to control the effects of virgin aggregate 

gradation.  Virgin PG 67-22 binder with Sasobit® was used for all mixtures. 

 
 

Table 3.14 Properties of 9.5 mm NMAS 25 and 50% RAP Recycled Mixtures 
 
Mixture ID 9.5-25/RM-1 9.5-25/RM-2 9.5-50/RM-1 9.5-50/RM-2 
Ndes 65 65 65 65 
Virgin Binder Grade PG 67-22 PG 67-22 PG 67-22 PG 67-22 
WMA Sasobit 1.0% Sasobit 1.0% Sasobit 1.0% Sasobit 1.0% 
Mix Temp (C) 116 116 116 116 
Comp Temp (C) 116 116 116 116 

Pe
rc

en
t P

as
si

ng
 

25.0 mm 100 100 100 100 
19.0 mm 100 100 100 100 
12.5 mm 99.1 100 98.3 99.9 
9.5 mm 93.0 95.1 91.8 95.9 
4.75 mm 59.2 62.5 58.4 64.9 
2.36 mm 39.7 42.4 39.7 45.2 
1.18 mm 29.9 31.5 30.9 34.0 
0.60 mm 23.2 24.3 25.0 27.1 
0.30 mm 14.6 15.5 15.8 17.5 
0.15 mm 9.6 9.9 9.9 10.5 
0.075 mm 7.2 7.5 7.3 7.8 

G-1 Gravel (%)  56 56 40 40 
L-1 LST (%) 8 8 0 0 
S-1 Sand (%) 10 10 9 9 
HL-1 Lime (%)  1 1 1 1 
RAP (%) 25 25 50 50 
RAP Source R-1 R-2 R-1 R-2 
Pb(R) (%) 5.5 5.6 5.5 5.6 
Gsb 2.450 2.460 2.453 2.473 
Gsa

 2.624 2.623 2.610 2.609 
Abs (%) 2.70 2.52 2.46 2.10 
PAC = Pb (%) 6.1 5.6 6.5 6.2 
Pb(V) (%) 4.7 4.2 3.7 3.4 
Gmm 2.306 2.334 2.311 2.338 
Gse 2.508 2.524 2.530 2.552 
VMA 15.2 14.0 15.4 14.9 
VFA 73.6 71.5 74.1 73.1 
P200/Pbe 1.4 1.6 1.4 1.6 
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3.5.4 Highway Base Mixtures 

 
 

3.5.4.1 Control Mixtures 

Control highway base mixtures properties are given in Table 3.15.  Four current 

practice control mixtures were obtained and tested; they were selected to encompass a 

performance range of current practice base mixtures.  All four of the mixtures contained 

15% RAP.  Three 12.5 mm NMAS mixtures and one 19.0 mm NMAS mixture were 

selected.  All the 12.5 mm NMAS mixtures used neat PG 67-22 binder; the 19.0 mm mix 

used polymer-modified PG 76-22 binder. 

The three 12.5 mm NMAS control mixtures represented three levels of design 

compactive effort (50, 65, and 85 gyrations).  They were selected to represent the range 

of performance of current practice, but their aggregates and gradations all varied so direct 

comparison is not possible.  The 19.0 mm NMAS mixture with polymer-modified binder 

represents a premium base mixture for applications with high performance standards.   

Additional control mixtures were required for Cantabro durability testing.  

Quality assurance (QA) specimens of a range of asphalt mixture types from around the 

state prepared at the MDOT central materials laboratory were tested at MDOT.  Details 

of these mixtures are given in Tables 3.16 and 3.17.  These mixtures contained varying 

amounts of RAP up to the 30% maximum allowed by MDOT in base mixtures. 
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Table 3.15 Properties of 12.5 and 19.0 mm NMAS Control Highway Base Mixtures 
 

Mixture ID 
12.5-15/ 
CM-1 

12.5-15/ 
CM-2 

12.5-15/ 
CM-3 

19.0-15/ 
CM-4 

CM-5 to 
CM-27 

Prep Methoda 3 2 1 3 3 
Ndes 50 65 85 85 varied 
Binder Grade 67-22 67-22 67-22 76-22 varied 
WMA none none none none none 
Mix Temp (C) 163 163 165 160 varied 
Comp Temp (C) 146 146 146 149 varied 

Pe
rc

en
t P

as
si

ng
 

25.0 mm 100 100 100 100 100 
19.0 mm 100 100 100 100 varied 
12.5 mm 94.3 95.4 93.1 89.4 varied 
9.5 mm --- --- --- --- varied 
4.75 mm --- --- --- 51.0 varied 
2.36 mm 50.1 36.2 40.5 --- varied 
1.18 mm --- --- --- --- varied 
0.60 mm --- --- --- --- varied 
0.30 mm --- --- --- --- varied 
0.15 mm --- --- --- --- varied 
0.075 mm 5.3 5.9 5.8 5.2 varied 

Gravel (%) 52 39 63 73 varied 
Limestone (%) 12 35 15 4 varied 
Sand (%) 20 10 6 7 varied 
Hyd. Lime (%) 1 1 1 1 varied 
RAP (%) 15 15 15 15 varied 
Pb(R) (%) 5.0 5.6 6.4 5.6 varied 
Gsb 2.556 2.515 2.510 2.497 varied 
Gsa

 2.646 2.663 2.628 2.627 varied 
Abs (%) 1.33 2.20 1.79 1.99 varied 
PAC = Pb (%) 5.2 5.40 5.70 4.90 varied 
Pb(V) (%) 4.45 4.56 4.74 4.10 varied 
Gmm 2.410 2.378 2.350 2.376 varied 
Gse 2.599 2.567 2.547 2.547 varied 
VMA 14.2 14.1 15.2 13.0 varied 
VFA 71.8 71.6 73.7 69.2 varied 
P200/Pbe 1.15 1.3 1.1 1.3 varied 

a)  Preparation methods were as follows: 
1. Laboratory mixed and short term conditioned according to standard procedure.  
2. Plant mixed, field sampled, transported in insulated containers, compacted 

immediately. 
3. Plant mixed, plant sampled, brought to laboratory, reheated prior to compaction. 
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Table 3.16 Properties of Plant Mixed 12.5 mm NMAS Control Highway Base 
Mixtures 5 to 20 

 
 Binder PAC = Pb  Aggregate Components (%) 
Mixture ID Grade (%) Ndes Gravel Limestone Sand RAP 
12.5-12/CM-5 76-22 5.2 85 27 50 10 12 
12.5-15/CM-6 76-22 5.5 85 40 34 10 15 
12.5-20/CM-7 76-22 3.7 85 0 75 4 20 
12.5-14/CM-8 67-22 5.2 85 74 4 7 14 
12.5-15/CM-9 67-22 5.2 85 75 0 9 15 
12.5-15/CM-10 67-22 5.7 65 73 4 7 15 
12.5-15/CM-11 67-22 5.0 65 24 50 10 15 
12.5-12/CM-12 67-22 5.2 65 53 26 8 12 
12.5-15/CM-13 67-22 5.3 65 69 5 10 15 
12.5-15/CM-14 67-22 5.4 50 75 0 9 15 
12.5-15/CM-15 67-22 4.7 50 0 61 8 30 
12.5-30/CM-16 67-22 5.6 50 64 10 10 15 
12.5-12/CM-17 67-22 5.0 50 68 5 8 12 
12.5-15/CM-18 67-22 5.7 50 40 34 10 15 
12.5-15/CM-19 67-22 6.0 50 52 16 16 15 
12.5-15/CM-20 67-22 5.2 50 72 0 12 15 
Notes:  All mixtures contained 1% hydrated lime and were prepared by method 3. 

 
 
 

Table 3.17 Properties of Plant Mixed 19.0 mm NMAS Control Highway Base 
Mixtures 21 to 37 

 
 Binder PAC = Pb  Aggregate Components (%) 
Mixture ID Grade (%) Ndes Gravel Limestone Sand RAP 
19.0-15/CM-21 76-22 4.7 85 73 4 7 15 
19.0-15/CM-22 76-22 4.8 85 48 26 10 15 
19.0-20/CM-23 67-22 4.6 85 59 10 10 20 
19.0-20/CM-24 67-22 4.9 85 55 14 10 20 
19.0-20/CM-25 67-22 5.7 85 68 0 10 20 
19.0-12/CM-26 67-22 4.4 85 64 13 10 12 
19.0-20/CM-27 67-22 4.5 85 28 41 10 20 
19.0-18/CM-28 67-22 5.1 65 71 0 10 18 
19.0-25/CM-29 67-22 3.9 65 0 64 10 25 
19.0-15/CM-30 67-22 4.9 65 69 5 10 15 
19.0-30/CM-31 67-22 4.6 65 0 65 4 30 
19.0-15/CM-32 67-22 4.9 65 0 74 10 15 
19.0-10/CM-33 67-22 5.7 50 73 6 10 10 
19.0-20/CM-34 67-22 4.4 50 35 32 12 20 
19.0-15/CM-35 67-22 4.4 50 39 10 35 15 
19.0-20/CM-36 67-22 5.3 50 49 20 10 20 
19.0-15/CM-37 67-22 4.8 50 0 74 10 15 
Notes:  All mixtures contained 1% hydrated lime and were prepared by method 3. 
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3.5.4.2 50 and 75% RAP Mixtures 

Four recycled mixtures containing either 50 or 75% RAP were designed in the 

laboratory; their properties are given in Table 3.18.  Based on results of the 100% RAP 

mixture testing, RAP source R-3 was not utilized for 50 or 75% RAP mixtures.  For the 

50% recycled mixtures, the virgin aggregate stockpile percentages were adjusted to 

match the same overall gradation as closely as possible.  The same goal was attempted 

for the 75% RAP mixtures, however the RAP aggregate gradation was dominate and the 

overall gradations could not be matched as closely.  Virgin PG 67-22 binder with 1.0% 

Sasobit® was used for all mixtures. 
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Table 3.18 Properties of 12.5 mm NMAS 50 and 75% RAP Recycled Mixtures 
 
Mixture ID 12.5-50/RM-1 12.5-50/RM-2 12.5-75/RM-1 12.5-75/RM-2 
Ndes 50 50 50 50 
Binder Grade PG 67-22 PG 67-22 PG 67-22 PG 67-22 
WMA Sasobit 1.0% Sasobit 1.0% Sasobit 1.0% Sasobit 1.0% 
Mix Temp (C) 116 116 116 116 
Comp Temp (C) 116 116 116 116 

Pe
rc

en
t P

as
si

ng
 

25.0 mm 100 100 100 100 
19.0 mm 100 100 100 100 
12.5 mm 93.0 90.5 91.9 94.3 
9.5 mm 83.5 81.2 82.4 88.6 
4.75 mm 51.3 53.2 53.0 62.8 
2.36 mm 33.7 36.0 36.3 44.4 
1.18 mm 25.9 26.9 29.2 33.9 
0.60 mm 21.4 22.3 25.1 28.2 
0.30 mm 15.0 16.0 17.3 19.9 
0.15 mm 10.2 10.1 11.1 12.0 
0.075 mm 7.8 7.7 8.3 8.9 

G-1 Gravel (%)  23 8 0 0 
G-3 Gravel (%) 23 41 24 24 
L-1 Limestone (%) 3 0 0 0 
S-1 Sand (%) 0 0 0 0 
HL-1 Lime (%)  1 1 1 1 
RAP (%) 50 50 75 75 
RAP Source R-1 R-2 R-1 R-2 
Pb(R) (%) 5.5 5.6 5.5 5.6 
Gsb 2.443 2.456 2.458 2.490 
Gsa

 2.608 2.602 2.599 2.597 
Abs (%) 2.59 2.28 2.21 1.66 
PAC = Pb (%) 7.3 6.1 7.3 6.1 
Pb(V) (%) 4.6 3.3 3.3 1.9 
Gmm 2.281 2.317 2.293 2.332 
Gse 2.522 2.522 2.538 2.541 
VMA 16.9 15.0 17.0 15.6 
VFA 76.3 73.3 76.4 74.3 
P200/Pbe 1.3 1.5 1.4 1.7 
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CHAPTER 4 
 

EXPERIMENTAL PROGRAM 
 
 

4.1 Overview of Experimental Program 

There are four major components of this experimental program corresponding to 

the four primary objectives of this dissertation.  The experimental program organization 

is shown in Figure 4.1.  Prior to development of experimental designs, a description of 

non standard test methods is given in Section 4.2. 

The first component is characterization of RAP properties and evaluation of 100% 

RAP mixture properties (described in Section 4.3.1).  The second component is 

evaluation of high RAP-WMA mixtures for airfield surfaces (described in Section 4.3.2).  

For the second component, control mixtures were part of the experimental design.  The 

third component is evaluation of high RAP-WMA mixtures for highway surfaces 

(described in Section 4.3.3).  For the third component, a range of current practice control 

mixtures were obtained for comparison to high RAP-WMA mixtures.  The fourth 

component is evaluation of high RAP-WMA mixtures for highway bases (described in 

Section 4.3.4).  For the fourth component, a range of current practice control mixtures 

were obtained for comparison to high RAP-WMA mixtures. 
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Figure 4.1 Flow Chart of Experimental Program 
 
 
 
 
 
 
 
 

Obtain Raw Materials 
• Virgin Aggregates 
• Virgin Binder 
• Warm Mix Additives 

Determine Properties of Raw Materials 
• Aggregate Gradation 
• Aggregate Specific Gravity 

Design High RAP-WMA Mixtures and Determine Volumetric Properties 

Airfield Surface Mixtures 
Section 4.3.2 

Highway Surface Mixtures
Section 4.3.3 

Highway Base Mixtures
Section 4.3.4 

100% RAP Experiments 
Section 4.3.1 

Obtain Control Mixtures 
Section 4.3.4.1 

Obtain Control Mixtures
Section 4.3.3.1 

Obtain 3 RAP Sources 
• R-1 
• R-2 
• R-3 

Determine Basic Properties of RAP 
• Asphalt Content 
• Aggregate Gradation 
• Aggregate Specific Gravity 
• Test Recovered Asphalt 
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4.2 Test Methods 

 
 

4.2.1 Fundamental Properties 

Theoretical maximum specific gravity (Gmm) was tested according to AASHTO T 

209.  A sample of asphalt mixture was mixed and short term conditioned according to 

Section 3.4.2 and at the conclusion of the short term aging period, the loose sample was 

cooled.  The sample was divided into two portions with a sample splitter; AASHTO T 209 

was performed on each split portion of the sample and the results were averaged to 

produce one Gmm result. 

Bulk specific gravity (Gmb) of compacted specimens was measured according to 

AASHTO T 331 (Corelok®).  An exception was for moisture damage (TSR) testing, 

where Gmb was measured according to ASTM D 2726 (submerged specimen method) in 

accordance with test method requirements.  A second exception was for specimens of 

airfield mixtures containing primarily limestone aggregate for rut resistance (APA) 

testing, where Gmb was measured according to AASHTO T 166 at a secondary laboratory.  

It was observed during testing that there were differences between void levels measured 

by the two methods at the desired APA void level.  Corelok® was observed to result in 

higher air voids than T 166.  The difference is relatively small, but direct comparison of 

rutting results between limestone and gravel airfield mixtures was avoided due to the 

observed difference in air voids between the methods. 

Density of compacted slabs used for PURWheel and skid resistance testing were 

estimated by measurement of the slab mass and slab thickness at six locations around the 

perimeter.  A bulk slab density value was computed from this data (Db-s); this density 
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value was used in conjunction with the mixture Gmm to compute an estimate of air voids 

for the slab.  To correlate this estimate of air voids with AASHTO T 331, a correlation 

equation from Doyle and Howard (2011) was utilized.  Eq. 4.1 is the combined equation 

relating air voids to bulk slab density and Gmm.  The equation was developed based on 

coring of 61 slabs (total of 366 cored specimens) compacted in the LAC and measurement 

of their air voids by AASHTO T 331. 

( )331 89 1 b s
a T

mm

D
V

G
− 

= − 
 

  (R2 =0.96)  (Eq 4.1) 

Where: 

Va(T 331) = air voids measured according to AASHTO T 331 

Db-s = bulk slab density (g/cm3) 

 
 
4.2.2 Indirect Tensile Strength 

Indirect tensile strength and time to failure were determined on SGC compacted 

specimens; testing was performed with an Interlaken universal soil and asphalt test 

system.  Before testing, specimens were brought to thermal equilibrium by placing them 

in the Interlaken environmental chamber where they were ultimately tested (Figure 4.2a).  

A specimen of comparable mass with an embedded thermometer was placed in the 

chamber with the test specimens to ensure sufficient conditioning had taken place prior to 

testing.  For select 100% RAP mixtures and highway surface mixtures, testing was 

conducted at low temperatures; details are provided in Sections 4.3.1 and 4.3.3.  For 

highway base mixtures all testing was conducted at 25 C.  The length of each specimen 

was measured, load-time data was recorded from the test at a frequency of 30 Hz; the 
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loading rate was 50 mm/min.  This information was used to calculate the indirect tensile 

strength at failure (St).  Figure 4.2b is a photo of testing. 

 
 

 
 
 
 
 
 
 
 
 

 
  a) Conditioning Samples b) Indirect Tensile Strength Testing 

 
Figure 4.2 Indirect Tensile Strength Testing 
 

 
 

4.2.3 Bending Beam Rheometer Mixture Test 

To investigate low temperature mechanical properties, flexural creep testing was 

performed with a BBR on mixture beam specimens prepared according to Section 3.4.4.  

The level of replication varied slightly between different components of this dissertation, 

partly since the airfield mixture component of this experimental program was conducted 

for a separate research project and partly because information was identified through 

literature review that indicated that three replicate specimens was likely adequate. 

For the 100% RAP component of this experimental program, five replicate 

specimens were tested at each temperature.  For airfield surface mixtures, two beam 

replicates were tested from each gyratory specimen at each test temperature.  For control 

highway surface mixtures, five replicate specimens were tested from each gyratory 

specimen at each temperature.  Literature review in combination with analysis of test 

Embedded 
Thermometer 
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method variability conducted as part of the highway surface mixture component of the 

experimental program led to a reduction in the level of replication for 25 and 50% RAP 

highway surface mixtures;  three replicate specimens were tested from each SGC 

specimen for those mixtures. 

Dimensions of the beam specimens were measured and recorded prior to testing.  

A CANNON Thermoelectric BBR was used for all testing.  Beam specimens were 

immersed in the cooling bath containing methanol of the BBR for 60 ± 5 minutes before 

testing to ensure they reached thermal equilibrium at the desired test temperature.  The 

test parameters were different than those for the standard binder test; the specific test 

parameters for the mixture test were a 4.9 N constant load and 1000 second test duration.  

Specimen deflection at the center of the mixture beam was recorded by the test 

equipment throughout the test.  Figure 4.3a shows the test fixture with a mixture beam 

specimen while removed from the coolant bath.  Figure 4.3b is an example of deflection 

data from the BBR mixture test.  Deflection data obtained during the BBR test is used to 

compute two test parameters: 1) mixture stiffness as a function of time; and 2) 

instantaneous slope of the mixture stiffness curve (m-value).  Values of each parameter 

are calculated at eight discrete loading times over the period of the test.  The time points 

are 8, 15, 30, 60, 120, 240, and 960 seconds. 
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  a)  Test Fixture with Specimen          b)  Example Deflection Data 

 
Figure 4.3 BBR Mixture Testing 
 
 
 
4.2.4 Cantabro Durability 

The Cantabro abrasion loss test procedure used in this study is described as 

follows.  Standard 150 mm diameter gyratory compacted specimens of nominal 115 mm 

height were compacted of each mixture.  Initially, the design compactive effort was 

utilized for all Cantabro specimens since the goal of this line of testing was to develop a 

test that could be performed in day to day operations with the types of specimens that are 

already being made for measurement of volumetric properties.  Based on the test data, 

compaction of specimens to a target density of 4.0 ± 0.5% air voids was also performed 

for select highway surface mixtures and 100% RAP; details are discussed in Section 4.3. 

The level of replication varied slightly between different components of this 

dissertation.  Initially, five replicate specimens were tested for control highway surface 

mixtures.  Analysis of test method variability conducted as part highway mixture 

component of the experimental program led to a reduction in the level of replication to 

three replicate specimens per mixture for all other testing. 
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Prior to testing, specimens were conditioned in an environmental chamber 

overnight (minimum of twelve hours) at 25 C.  A dummy specimen of similar properties 

with an embedded thermocouple was exposed to the same conditions to verify that the 

internal temperature of all samples equilibrated to 25 C.  The temperature of the LA 

Abrasion drum was checked before every test and was required to be 25 ± 2 C before 

testing.  A specimen was placed in the drum of an LA Abrasion testing machine without 

the charge of steel spheres and subjected to 300 revolutions.  The mass of the specimen 

was recorded before and after the test and the loss in specimen mass as a percentage (ML) 

during the test was reported as a percentage of the original mass.  All debris leftover from 

the previous test was removed from the LA Abrasion drum before each test to ensure that 

there was no variability introduced to the results due to cushioning of the test sample.  

Figure 4.4 allows for a visual comparison of tested Cantabro specimens with varying 

binder contents and subsequently varying levels of mass loss (ML). 

A limited amount of highway surface mixture testing was included in the 

experimental program to evaluate the effects of laboratory conditioning methods on ML.  

Two laboratory conditioning protocols were selected: 1) the long term conditioning 

protocol for compacted test specimens of AASHTO R-30; and 2) the conditioning 

protocol specified in Mississippi test method MT-85.  The R-30 protocol was 120 ± 0.5 

hours (5 days) in a forced draft oven set to 85 ± 3 C.  The MT-85 protocol was 168 hours 

(7 days) in a forced draft oven set to 64 C.  The MT-85 test method does not specify time 

and temperature tolerances, so the tolerances from R-30 were utilized.  Specimens were 

subjected to the desired conditioning protocol then allowed to cool overnight before 

testing for ML according to the same procedure as was used for the un-aged specimens. 
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Figure 4.4 Tested Cantabro Specimens with Varying Total Asphalt Content (PAC) 

 
 
 

4.2.5 Moisture Damage (TSR) 

Moisture damage testing was performed according to ASTM D 4867 on 62.5 mm 

tall by 100 mm diameter gyratory compacted specimens.  In accordance with ASTM D 

4867, target air voids of specimens compacted for moisture damage testing was 7 ± 1% 

as measured by ASTM D 2726 (submerged specimen method).  A freeze-thaw cycle was 

not performed as part of the conditioning process.  As previously mentioned in Section 

3.4, virgin aggregate batches were mixed with approximately 2% water prior to heating 

to ensure coating of the aggregate by the hydrated lime. 

 
 

4.2.6 Rutting (APA) 

For APA rut resistance testing, a test temperature of 64 C was used according to 

MDOT recommendations.  The wheel load was 445 N (100 lb) and the hose pressure was 

690 kPa (100 psi) according to AASHTO TP 63.  The wheel load and hose pressure were 

verified once per day and adjusted if necessary.  Automatic measurement of rut depths 

was used for all data.  Specimens were preconditioned at the test temperature prior to 

testing for a minimum of 6 hours but not more than 24 hours. 

Untested 
Specimen 

PAC =Pb = 6.6 
ML = 9.1 
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APA specimens were created by compaction to a target height and density in the 

SGC as described in Section 3.4.3.  The target air voids were 7 ± 0.5% or 10 ± 1.0% and 

the target height was 75 ± 5 mm.  The purpose of testing two different air void levels for 

APA rutting was to evaluate rutting rate of the mixtures independent of the air void level.   

 
 

4.2.7 PURWheel 

PURWheel testing was performed on specimens created by sawing LAC 

compacted slab specimens in half; specimens were approximately 29 cm wide and 31 cm 

long.  Two PURWheel specimens corresponding to the halves of a compacted slab were 

tested at the same time in the left and right tracks of the PURWheel to be a single 

replicate PURWheel test.  The basic features and test parameters of the PURWheel in use 

at MSU are given here, additional details can be found in Howard et al. (2010). 

Test specimens are grouted in place with Plaster of Paris during testing.  The test 

temperature for the PURWheel is 64 C (same test temperature as the APA).  Once the test 

chamber reaches the target temperature, the specimens are conditioned for six hours, not 

to exceed 24 hours, to ensure the specimen reaches thermal equilibrium.  Two 

independently controlled wheel carriages mounted with 4-ply pneumatic tires are used to 

load the specimens during the test.  The tire inflation pressure is 862 kPa and the wheel 

load is 178.6 kg, resulting in a gross contact pressure at the beginning of the test of 

approximately 630 kPa.  The travel speed of the wheel over the specimen during testing 

is 33 cm/sec.  A full test consists of 20,000 passes of the wheel over the test specimen or 

a cumulative rut depth of 15 mm measured by the software (corresponds to a physical 

specimen deformation of 23 mm), whichever comes first.  Eq. 4.2 is the correlation 
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equation used to convert rut depths measured by the LVDT’s on the PURWheel to rut 

depths that would be measured by manual methods. 

( )2

. 0.0153 1.3M Adj T TR R R R= = +
 

(R2 = 0.96) (Eq 4.2) 

Where: 

RM = total rut depth measured manually (mm) 

RAdj. = adjusted rut depth accounting for LVDT & manual measurement difference (mm) 

RT = rut depth measured by PURWheel LVDT’s (mm) 

During testing the rut depth of the test specimen is measured over the central 20 

cm and recorded by the PURWheel control software.  In addition to the electronic 

measurement of specimen rut depth during the test, manual measurements of the final 

specimen rut depth are also recorded for each PURWheel test. 

Air voids of slabs tested in the PURWheel were on the order of 8 to 10% on a 

Corelok® (T 331) basis or 6.8 to 8.3% on a submerged (T 166) basis for most mixtures 

though the voids varied somewhat in a few cases.  The compactive effort of all slabs was 

constant at 18 passes and 2413 kPa hydraulic system pressure.  The void levels 

experienced by most slabs is in line with the Table 2.3 DOT specifications where average 

target, full pay maximum, and removal void levels were approximately 7, 8, and 10% 

measured via T 166. 

A maximum air void criteria for slabs was established as 10% measured via T 166 

or 12.3% via T 331 (Eq. 2.3 used to correlate T 166 to T 331).  This criteria is in line with 

the average air void level warranting removal in the southeast US.  This criteria allows air 

voids to be in the range stated by Terrel and Al-Swailmi (1993) to be favorable to 

moisture damage (7 to 11%).  Testing slabs at air void levels representing the higher end 
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of permissible values is more indicative of cases likely to be susceptible to moisture 

damage in service.  If a mixture performs adequately at the upper end of allowable voids, 

it should in turn perform well at the lower end of allowable voids with the same 

aggregate blend and asphalt content. 

 
 

4.2.7.1 PURWheel Dry Protocol 

Slabs were tested in a dry condition at 64 C for rutting evaluation.  An example of 

a tested slab from the PURWheel dry protocol test is seen in Figure 4.5a.  An example set 

of test data for a PURWheel dry protocol test is seen in Figure 4.5b, note the smooth 

progression of rutting in both left and right test specimens and that Eq. 4.2 was used to 

determine adjusted rut depths. 

 
 
 

              
  a)  Tested PURWheel Dry Test Specimen   b)  Example PURWheel Data for Dry Test 

 
Figure 4.5 PURWheel Dry Protocol Rutting Test 
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4.2.7.2 PURWheel Wet Protocol 

For combined asphalt mixture rutting and moisture damage evaluation using the 

PURWheel, test specimens were tested underwater at 64 C after 6 hr of conditioning.  An 

example of a tested PURWheel specimen for moisture damage evaluation is seen in 

Figure 4.6a, note the loss of aggregate coating in the wheel path.  An example set of test 

data for a PURWheel wet protocol test is seen in Figure 4.6b, note the quick progression 

of damage and early failure of the test specimens.  Early failure occurred more frequently 

using wet testing but did not occur in all instances. 

 
 

                  
  a)  Tested PURWheel Wet Specimen    b)  Example PURWheel Data for Wet Test 

 
Figure 4.6 PURWheel Wet Protocol Moisture Damage Test 

 
 
 

4.3 Experimental Designs 

 
 

4.3.1 100% RAP Experiments 
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in an attempt to reduce the number of variables involved by removing virgin aggregate 

effects.  The purpose was not to design or assess 100% RAP mixtures for use in paving. 

From an experimental standpoint, recycled mixtures have four major factors or 

variables: 1) aggregate contributed from RAP; 2) virgin aggregate; 3) aged asphalt 

bitumen contributed from RAP; and 4) virgin asphalt.  A statistical analysis of an 

experiment containing four variables has eleven interactions between variables that must 

be checked and either eliminated or included in the analysis before the four major 

variables of interest can be evaluated.  In the case of a statistical analysis of three major 

factors there are only four interactions to be checked before the main effects can be 

evaluated.  In the case of a statistical analysis of two major factors there is only one 

interaction to be checked before main effects can be evaluated.  While effects of the four 

factors concerning recycled mixtures can never be fully isolated and measured separately, 

the number of total variables can be lowered in an attempt to reduce the overall 

complexity of the problem.  The purpose of this work was to allow for a better 

fundamental understanding of recycled asphalt mixtures. 

Three 100% RAP mixtures were designed with properties were given in Section 

3.5.1.  The experimental testing performed for 100% RAP mixtures is given in Table 4.1; 

the values in each row for a mixture indicate the number of replicates tested for each test 

type and condition.  Performance was evaluated in four categories; 1) rutting (APA and 

dry PURWheel); 2) durability (Cantabro); 3) non-load associated cracking (BBR mixture 

test and IDT); and 4) moisture damage (TSR and wet PURWheel).  The data from 100% 

RAP testing was analyzed to determine if the performance of 100% RAP mixtures can be 

used to estimate the performance of a recycled mixture containing a percentage of the 
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same RAP source (e.g. 50% RAP mixture).  Results from testing 100% RAP mixtures 

were used to guide the investigation of high RAP recycled mixtures for airfield and 

highway applications. 

Additionally, four experiments were performed to evaluate the effects on RAP of 

heating, compaction variables and absorption of asphalt by RAP aggregate.  The 

experiments are described in the following subsections.  Analysis of all 100% RAP data 

is provided in Chapter 5. 

 
 

Table 4.1 Investigation of 100% RAP Mixtures Compacted with SGC Designed 
Asphalt Content from Table 3.5 

 
Compaction  Mixture 
Type Test Parameters 9.5-100/RM-1 9.5-100/RM-2 12.5-100/RM-3 
SGC APA 7% Va 2 2 2 
 APA 10% Va 2 2 2 
 TSR 7% Va 1 1 1 
 Cantabro Un-aged 3 3 3 
 BBR -06 C 1 1 1 
 BBR -12 C 1 1 1 
 BBR -18 C 1 1 1 
 BBR -24 C 1 1 1 
 IDT -06 C 2 2 0 
 IDT -12 C 2 2 0 
 IDT -18 C 2 2 0 
 IDT -24 C 2 2 0 
 IDT +25 C 2 2 0 
LAC PURWheel    Dry 2 2 2 
 PURWheel    Wet 2 2 2 
APA A replicate consisted of a single track in the test equipment composed of 

two 150 mm diameter specimens. 
TSR A replicate consisted of six specimens tested according to ASTM D 4867.  
Cantabro A replicate consisted of one SGC (65 gyrations) compacted specimen. 
BBR A replicate consisted of five mixture beams at one temperature from an 

SGC specimen. 
IDT A replicate consisted of one 100 mm diameter specimen. 
PURWheel A replicate consisted of two specimens cut from a single LAC compacted 

slab and tested side by side at the same time. 
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4.3.1.1 RAP Relative Heating Experiment 

A small experiment was performed with the 9.5-100/RM-1 mixture to investigate 

the effects of relative heating time on RAP compaction behavior.  The RAP was placed in 

pre-heated steel trays in a layer approximately 5 cm thick and heated in a forced draft 

oven at 177 C for 15 minutes.  The goal was to approximate, albeit crudely, the relatively 

short period of heating at high temperature that RAP experiences in an asphalt plant 

during production.  The RAP was then removed and mixed with the appropriate amount 

of virgin binder in the standard manner before being placed in pans for short term aging 

at 146 C.  Five different short term aging times were utilized: 60, 90, 180, 360, and 1440 

minutes.  At the conclusion of short term aging, specimens were compacted in the SGC 

with the design compactive effort (65 gyrations).  Three replicate specimens were 

produced for each short term aging time and were tested with the Cantabro test.  The 

experimental was then repeated with three more replicates compacted to target 4.0 ± 

0.5% air voids.  Two Gmm replicates were produced as part of this experimental program 

to evaluate long term asphalt absorption potential of RAP mixture, one with 60 minutes 

of aging and one with 1440 minutes of aging. 

 
 

4.3.1.2 RAP Compaction Experiment 

To evaluate mixture parameter effects on the compaction behavior of RAP and 

virgin binder in the absence of virgin aggregate, additional 100% RAP testing was 

conducted with an expanded number of experimental variables and a reduced level of 

replication.  To accomplish this, a 34 factorial designed experiment was created for each 

RAP source encompassing factors of compaction temperature, compactive effort, warm 



www.manaraa.com

141 

mix additives, and amount of virgin binder.  The data was utilized to investigate 

quantities of inert and effective RAP asphalt in Chapter 5.  Based on results of the testing 

performed with the R-1 RAP source at compaction temperatures of 116 and 138 C, the 

number of factors examined and the amount of testing performed was greatly reduced for 

the other RAP sources and the 154 C compaction temperature with R-1 RAP.  In all, 

nearly 400 specimens of 100% RAP with virgin binder were compacted in this portion of 

the research. 

The amount of virgin binder added and total asphalt contents selected for use in 

this part of the experimental program were based on preliminary work in Howard et al. 

(2009).  Three levels of added virgin binder (low, medium, and high) were investigated 

corresponding to on the order of 0.5, 1.5, and 2.5% virgin binder.  The true amount of 

virgin binder, RAP asphalt, and total asphalt (PAC) is shown in Table 4.2 on a mix mass 

basis.  The concept was to have three different virgin binder contents that would 

encompass 4% air voids when compacted. 

Table 4.3 is an experimental design detailing the specific factor-level 

combinations that were tested.  Performance testing was performed for specimens from 

some of the factor-level combinations; however the data is not part of this dissertation.  

The performance data can be found in Doyle and Howard (2010b). 
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Table 4.2 Asphalt Contents For 100% RAP at Varying Conditions 
 
RAP 
Source 

Total Asphalt Content (PAC) Pbe(V) 

(%) 
Pb(R) 

(%) Range (%) 
R-1 High 8.1 2.8 5.3 
 Med 7.1 1.7 5.4 
 Low 6.0 0.6 5.4 
R-2 High 8.2 2.7 5.5 
 Med 7.2 1.7 5.5 
 Low 6.2 0.6 5.6 
R-3 High 7.4 2.5 4.9 
 Med 6.4 1.5 4.9 
 Low 5.5 0.5 5.0 

 



www.manaraa.com

  

143

T
ab

le
 4

.3
 

E
xp

er
im

en
ta

l D
es

ig
n 

of
 1

00
%

 R
A

P
 M

ix
tu

re
s 

C
om

pa
ct

ed
 a

t V
ar

yi
ng

 C
on

di
ti

on
s 

  
 

 
W

ar
m

 M
ix

 A
d

d
it

iv
e 

an
d

 T
ot

al
 A

sp
h

al
t 

C
on

te
n

tT
ab

le
 4

.2

R
A

P
 

C
om

p
 

 
N

on
e 

E
vo

th
er

m
™

 3
G

 0
.5

%
 

S
as

ob
it

®
 1

.0
%

 
S

ou
rc

e 
T

em
p

 (
C

) 
N

de
s 

H
ig

h
 

M
ed

 
L

ow
 

H
ig

h
 

M
ed

 
L

ow
 

H
ig

h
 

M
ed

 
L

ow
 

R
-1

 
11

6 
50

 
X

 
X

 
X

 
X

 
X

 
X

 
X

 
X

 
X

 
 

11
6 

65
 

X
 

X
 

X
 

X
 

X
 

X
 

X
 

X
 

X
 

 
11

6 
85

 
X

 
X

 
X

 
X

 
X

 
X

 
X

 
X

 
X

 
 

13
8 

50
 

X
 

X
 

X
 

X
 

X
 

X
 

X
 

X
 

X
 

 
13

8 
65

 
X

 
X

 
X

 
X

 
X

 
X

 
X

 
X

 
X

 
 

13
8 

85
 

X
 

X
 

X
 

X
 

X
 

X
 

X
 

X
 

X
 

 
15

4 
65

 
X

 
X

 
X

 
X

 
X

 
X

 
X

 
X

 
X

 
R

-2
 

11
6 

65
 

X
 

X
 

X
 

X
 

X
 

X
 

N
T

a
N

T
a

N
T

a

 
13

8 
65

 
X

 
X

 
X

 
X

 
X

 
X

 
X

 
X

 
X

 
 

15
4 

65
 

X
 

X
 

X
 

X
 

X
 

X
 

N
T

a
N

T
a

N
T

a

R
-3

 
11

6 
65

 
X

 
X

 
X

 
X

 
X

 
X

 
X

 
X

 
X

 
 

13
8 

65
 

X
 

X
 

X
 

X
 

X
 

X
 

X
 

X
 

X
 

 
15

4 
65

 
X

 
X

 
X

 
X

 
X

 
X

 
X

 
X

 
X

 
a)

  N
ot

 te
st

ed
 d

ue
 to

 in
su

ff
ic

ie
nt

 m
at

er
ia

l. 
   



www.manaraa.com

 

144 

4.3.1.3 RAP Absorbed Asphalt Experiment 1 

To investigate the potential for additional absorption of asphalt by RAP aggregate 

an experiment was performed that consisted of two factors: 1) additional virgin asphalt 

content (high, medium, and low); and 2) RAP heating and compaction temperature (116 

and 138 C).  The factors and levels were the same as in Table 4.3 and 4.4; three Gmm 

replicates were prepared of each factor level combination. The first replicate was only 

virgin binder, the second replicate contained Sasobit® and the third replicate contained 

Evotherm™ 3G.  Based on results of this experiment with the R-1 source, only the factor 

of additional virgin asphalt content was examined for the R-2 and R-3 sources. 

 
 

4.3.1.4 RAP Absorbed Asphalt Experiment 2 

Another experiment was performed on the R-1 and R-3 RAP sources to 

investigate absorption of asphalt by RAP aggregate; it consisted of testing four Gmm 

replicates from two samples of RAP.  The first sample of RAP was split; one half was 

used to determine Gmm  and the other half was heated for 120 minutes at 171 C then 

cooled and used to determine Gmm.  The second sample of RAP was heated for 120 

minutes at 171 C then mixed with 2% additional virgin binder.  The second sample was 

split; one half was immediately cooled and the other half was placed in an oven at the hot 

mix compaction temperature (146 C) for four hours before it was removed and cooled.  

Gmm was determined for each half of the second sample.  A four hour short term age was 

chosen as being conducive to producing a maximum potential for asphalt absorption; hot 

mix temperatures were chosen in favor of warm mix temperatures as they are more 

favorable to asphalt absorption. 
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4.3.2 Airfield Surface Mixtures 

Current practice airfield surface mixtures typically are not allowed to contain 

RAP; however up to 30% RAP is allowed in shoulder and intermediated layer (binder 

and base) mixes (USACE 2010).  WMA has not yet seen wide use in airfield mixtures.  

This component of the experimental program was developed to investigate performance 

issues related to high RAP-WMA airfield surface mixtures.  Table 4.4 summarizes the 

experimental design for this component of the experimental program; it included factors 

of aggregate type, RAP content (all R-1 RAP source) and mixture type.  All factor-level 

combinations of the factorial experiment were tested, encompassing twenty-four asphalt 

mixtures.  The mixture identification nomenclature for airfield surface mixtures is given 

in Table 4.5.  Properties of the airfield surface mixtures were given in Section 3.5.2. 

Four performance characteristics were evaluated for all airfield surface mixtures: 

1) permanent deformation; 2) durability; 3) non-load associated cracking; and 4) moisture 

damage.  Performance testing details are given in Table 4.5 and were as follows.  For 

permanent deformation (rutting resistance) assessment, the APA test was performed.  For 

durability performance the Cantabro test was performed (denoted by ML in Table 4.5).  

The BBR mixture test was performed for non-load associated cracking assessment; four 

beam specimens for each temperature.  Moisture damages assessment was performed 

with the TSR test.  In addition, binder testing was performed for airfield mixtures 1 to 12. 
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Table 4.4 Airfield Surface Mixtures Experimental Design 
 

Mixture Type 

Virgin Aggregate Type and RAP Content 
12.5 mm NMAS Limestone 12.5 mm NMAS Crushed Gravel 
0% RAP 25% RAP 50% RAP 0% RAP 25% RAP 50% RAP 

HMA X X X X X X 
WMA-Evotherm X X X X X X 
WMA-Sasobit X X X X X X 
WMA-Foam X X X X X X 

 
 
 
Table 4.5 Airfield Surface Mixtures Nomenclature and Performance Testing 
 
 Aggregate Type RAP Mix Type APA ML BBR TSR
Mixture ID and Gradation (%) (---) (---) (---) -06 C -12 C (---) 
12.5-0/AM-1 Limestone 0 HMA 3 3 2 2 1 
12.5-0/AM-2 (LS-1)  Sasobit® 3 3 2 2 1 
12.5-0/AM-3   Evotherm™ 3G 3 3 2 2 1 
12.5-0/AM-4   Foam 3 3 2 2 1 
12.5-25/AM-5 Limestone 25 HMA 3 3 2 2 1 
12.5-25/AM-6 (LS-2)  Sasobit® 3 3 2 2 1 
12.5-25/AM-7   Evotherm™ 3G 3 3 2 2 1 
12.5-25/AM-8   Foam 3 3 2 2 1 
12.5-50/AM-9 Limestone 50 HMA 3 3 2 2 1 
12.5-50/AM-10 (LS-3)  Sasobit® 3 3 2 2 1 
12.5-50/AM-11   Evotherm™ 3G 3 3 2 2 1 
12.5-50/AM-12   Foam 3 3 2 2 1 
12.5-0/AM-13 Crushed Gravel 0 HMA 3 3 2 2 1 
12.5-0/AM-14 (GR-1)  Sasobit® 3 3 2 2 1 
12.5-0/AM-15   Evotherm™ 3G 3 3 2 2 1 
12.5-0/AM-16   Foam 3 3 2 2 1 
12.5-25/AM-17 Crushed Gravel 25 HMA 3 3 2 2 1 
12.5-25/AM-18 (GR-2)  Sasobit® 3 3 2 2 1 
12.5-25/AM-19   Evotherm™ 3G 3 3 2 2 1 
12.5-25/AM-20   Foam 3 3 2 2 1 
12.5-50/AM-21 Crushed Gravel 50 HMA 3 3 2 2 1 
12.5-50/AM-22 (GR-3)  Sasobit® 3 3 2 2 1 
12.5-50/AM-23   Evotherm™ 3G 3 3 2 2 1 
12.5-50/AM-24   Foam 3 3 2 2 1 
APA A replicate consisted of a single track in the test equipment composed of 

two 150 mm diameter specimens. 
Cantabro A replicate consisted of one SGC compacted (75 gyrations) un-aged 

specimen. 
BBR A replicate consisted of 2 mixture beams at one temperature from an SGC 

specimen. 
TSR A replicate consisted of six specimens tested according to ASTM D 4867. 
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4.3.3 Highway Surface Mixtures 

The purpose of this component of the experimental program was to investigate the 

feasibility of using 25 to 50% RAP in WMA highway surface mixtures.  All mixtures 

studied were 9.5 mm NMAS and met MDOT requirements for surface mixtures.  Control 

mixtures used in this part of the experimental program were MDOT approved mixtures 

from current practice.  Current practice mixtures, especially plant-mixed material, 

provide the most realistic reference for the mixes under investigation.  Since no previous 

data or experience with high RAP-WMA in Mississippi was available, comparison to 

currently acceptable mixes was appropriate.  The following subsections describe testing 

of the control mixtures and the high RAP-WMA mixtures. 

 
 

4.3.3.1 Control Mixtures 

A decision was made to use current practice MDOT approved mixtures as the 

primary control; the majority of 9.5 mm MDOT approved surface mixtures contain 10 to 

15% RAP.  Using current practice mixtures containing 15% RAP for performance 

comparisons instead of producing 0% RAP mixtures in the laboratory was a pragmatic 

compromise between the experimental rigor of a 0% RAP control mixture and the 

realism of current practice 15% RAP mixtures for control comparison. 

Generally speaking, the relative performance boundaries of asphalt mixtures in 

Mississippi are represented by 50 design gyration and 85 gyration mixtures.  50 gyration 

mixtures have the highest effective asphalt content for a particular gradation; this results 

in a flexible pavement that is resistant to cracking but also results in a pavement that can 

be susceptible to rutting under heavy traffic.  85 gyration mixtures have the lowest 
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effective asphalt content for a particular gradation; this results in stiff pavements that are 

resistant to rutting but can also result in an increased potential for cracking.  The goal 

when selecting control mixtures was to encompass the range of potential cracking and 

rutting resistance of current practice mixtures to the best extent possible.  This allowed 

evaluation of the recycled mixtures in terms of the range of current practice.  Properties 

of the control highway surface mixtures were given in Section 3.5.3.1 

The experimental testing performed on control highway surface mixtures as part 

of this component of the experimental program is provided in Table 4.6; the values in 

each row for a mixture indicate the number of replicates tested for each test type and 

condition.  Performance was evaluated in four categories; 1) rutting (APA and dry 

PURWheel); 2) durability (Cantabro); 3) non-load associated cracking (BBR mixture test 

and IDT); and 4) moisture damage (TSR and wet PURWheel).  For PURWheel testing, 

four tests (two wet and two dry) were performed on each plant mixed material and two 

tests (one wet and one dry) were performed on each of the laboratory mixed versions of 

the 9.5-15/CM-4 control mixture. 

BBR testing of each SGC compacted specimen produced one replicate of five 

beams at each of the four test temperatures.  At any temperature one replicate was the 

average of five beams.  The baseline replication level was two, which required two SGC 

specimens.  Additional replicates were tested for control mixes 1, 4a and 4b to evaluate 

variability. 
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For the Cantabro durability test, additional data was required to establish both the 

expected variability of the test method and a range of test results representative of current 

practice Mississippi mixtures.  To achieve this goal, quality control (QC) specimens of 

plant produced mixtures were obtained from a local asphalt plant and tested at MSU.  

Additionally, quality assurance (QA) specimens of a range of asphalt mixture types from 

around the state prepared at the MDOT central materials laboratory were tested at 

MDOT.  Details of the testing performed with these mixtures are given in Table 4.7. 

To measure test method variability, plant mixed QC specimens of two mixtures 

were obtained and tested (9.5-15/CM-5 and 9.5-15/CM-6).  Thirty un-aged specimens 

each of 9.5-15/CM-5 and 9.5-15/CM-6 were tested to establish variability of the test 

method. Based on the investigation of test variability, the baseline number of replicates 

for Cantabro testing was reduced from five to three for all additional testing (the only 

control mixture affected was 9.5-15/CM-4c). 

For mixture 9.5-15/CM-5, three aged Cantabro specimens were tested per aging 

protocol.  Based on the results, data for the aging protocol resulting in the greatest ML 

increase (R-30) was then supplemented to reach 30 total replicates.  The data was used to 

evaluate variability of aged specimens and to establish a baseline of aged test results. 

To evaluate the range of expected performance of typical Mississippi mixtures 

with respect to un-aged Cantabro results, QA specimens were tested.  Twenty-two mixes 

were compacted and tested at the MDOT central laboratory, and properties of these 

mixtures are given in Table 4.7 (control mixtures 7 to 28).  Two replicates were typically 

tested per mix based on availability, though in a few cases multiple sets of the same mix 

were available from different projects and were tested resulting in four to eight replicates. 
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Based on results of the Cantabro testing with specimens compacted with design 

compactive effort, additional investigation was performed of specimens compacted to 

target 4% air voids for select mixtures.  Three specimens of mixture 9.5-15/CM-3 were 

compacted to target voids.  Thirty specimens of mixture 9.5-15/CM-6 were compacted to 

target air voids to assess variability. 

 
 

Table 4.7 Replication Details for Cantabro Plant Mixed Control Mixtures 5 to 28 
 
 Cantabro Specimens Tested 
Mixture ID Un-aged, Ndes Un-aged, 4% Va R-30, Ndes MT-85, Ndes 
9.5-15/CM-5 30 0 30 3 
9.5-15/CM-6 30 30 0 0 
9.5-15/CM-7 2 0 0 0 
9.5-15/CM-8 2 0 0 0 
9.5-10/CM-9 4 0 0 0 
9.5-15/CM-10 2 0 0 0 
9.5-15/CM-11 4 0 0 0 
9.5-15/CM-12 2 0 0 0 
9.5-15/CM-13 2 0 0 0 
9.5-15/CM-14 2 0 0 0 
9.5-15/CM-15 2 0 0 0 
9.5-15/CM-16 2 0 0 0 
9.5-15/CM-17 2 0 0 0 
9.5-15/CM-18 2 0 0 0 
9.5-15/CM-19 2 0 0 0 
9.5-15/CM-20 2 0 0 0 
9.5-10/CM-21 2 0 0 0 
9.5-15/CM-22 2 0 0 0 
9.5-0/CM-23 2 0 0 0 
9.5-10/CM-24 2 0 0 0 
9.5-10/CM-25 2 0 0 0 
9.5-6/CM-26 8 0 0 0 
9.5-10/CM-27 4 0 0 0 
9.5-10/CM-28 2 0 0 0 
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4.3.3.2 25 and 50% RAP Mixtures 

To investigate performance of 25 to 50% RAP in WMA for highway surface 

applications, an experimental design was created to include factors of RAP content and 

RAP source.  Based on results of 100% RAP testing, the R-3 RAP source was not 

included.  The experimental design and mixture identification is provided in Table 4.8.  

All the mixtures were 9.5 mm NMAS, designed with 65 gyrations compactive effort, and 

contained Sasobit®.  Properties of the mixtures were given in Section 3.5.3.2. 

 
 

Table 4.8 Highway Surface Mixtures Experimental Design 
 

 RAP Source  
RAP Content R-1 R-2 
25% 9.5-25/RM-1 9.5-25/RM-2 
50% 9.5-50/RM-1 9.5-50/RM-2 

 
 
 
For the recycled mixtures, a suite of testing was performed as detailed in Table 

4.9; the values in each row for a mixture indicate the number of replicates tested for each 

test type and condition.  Performance was evaluated in four categories; 1) rutting (APA 

and dry PURWheel); 2) durability (Cantabro); 3) non-load associated cracking (BBR 

mixture test and IDT); and 4) moisture damage (TSR and wet PURWheel).  Cantabro 

testing of specimens to target air voids was performed for all mixtures.  Cantabro testing 

of aged specimens was only performed for mixtures containing RAP source R-1. 
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Table 4.9 Performance Testing and Replication of 25 and 50% RAP Recycled 
Mixtures 

 
Compaction  Mixture    

Type Test Parameters 
9.5-25/ 
RM-1 

9.5-25/ 
RM-2 

9.5-50/ 
RM-1 

9.5-50/ 
RM-2 

SGC APA 7% Va 2 2 2 2 
 APA 10% Va 2 2 2 2 
 TSR 7% Va 1 1 1 1 
 Cantabro Un-aged, Ndes 3 3 3 3 
 Cantabro Un-aged, 4% Va 3 3 3 3 
 Cantabro R-30, Ndes 3 0 3 0 
 BBR -06 C 2 2 2 2 
 BBR -12 C 2 2 2 2 
 BBR -18 C 2 2 2 2 
 BBR -24 C 2 2 2 2 
 IDT -06 C 2 2 2 2 
 IDT -12 C 2 2 2 2 
 IDT -18 C 2 2 2 2 
 IDT -24 C 2 2 2 2 
LAC PURWheel    Dry 2 2 2 2 
 PURWheel    Wet 2 2 2 2 
APA A replicate consisted of a single track in the test equipment composed of 

two 150 mm diameter specimens. 
TSR A replicate consisted of six specimens tested according to ASTM D 4867. 
Cantabro A replicate consisted of one SGC compacted specimen. 
BBR A replicate consisted of five mixture beams at one temperature from an 

SGC specimen. 
IDT A replicate consisted of one 100 mm diameter specimen. 
PURWheel A replicate consisted of two specimens cut from a single LAC compacted 

slab and tested side by side at the same time. 
 

 
 

4.3.4 Highway Base Mixtures 

The purpose of this experimental program component was to investigate 

feasibility of using 50 to 75% RAP in WMA highway bases.  In keeping with the 

philosophy for highway surface mixtures, control mixes were MDOT approved and from 

current practice.  Control mixtures studied were 12.5 mm or 19.0 mm NMAS and met 

MDOT base requirements.  High RAP mixtures studied were 12.5 mm NMAS.  The 

following subsections describe testing of the control mixes and high RAP-WMA mixes. 
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4.3.4.1 Control Mixtures 

Properties of the control highway base mixtures were given in Section 3.5.4.1.  

The four main control mixtures all contained 15% RAP.  The experimental testing 

performed on control highway base mixtures as part of this component of the 

experimental program is provided in Table 4.10; the values in each row for a mixture 

indicate the number of replicates tested for each test type and condition.  Performance 

was evaluated in four categories; 1) rutting (APA and dry PURWheel); 2) durability 

(Cantabro); 3) tensile strength (IDT); and 4) moisture damage (TSR and wet PURWheel). 

For PURWheel testing a common test temperature was utilized throughout this 

study to provide a relative comparison of properties for high RAP mixtures.  However, 

another approach with merit in loaded wheel tracker testing is to adjust the test 

temperature based on anticipated temperature at desired location within the pavement 

structure (i.e. lower test temperature for base layers).  Other researchers have successfully 

taken that approach (e.g. Nielson 2010). 

Additional Cantabro testing was performed to establish a range of test results 

representative of current practice Mississippi mixtures.  Plant produced QA specimens of 

a range of asphalt mixture types from around the state prepared at the MDOT central 

materials laboratory were tested at MDOT.  Details of the testing performed with these 

mixtures are given in Table 4.11. 
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Table 4.11 Replication Details for Cantabro Plant Mixed 12.5 mm and 19.0 mm 
NMAS Control Mixtures 5 to 37 

 
 Cantabro Specimens Tested 
Mixture ID Un-aged, Ndes   
12.5-12/CM-5 2   
12.5-15/CM-6 2   
12.5-20/CM-7 2   
12.5-14/CM-8 2   
12.5-15/CM-9 8   
12.5-15/CM-10 2   
12.5-15/CM-11 10   
12.5-12/CM-12 4   
12.5-15/CM-13 2   
12.5-15/CM-14 4   
12.5-15/CM-15 2   
12.5-30/CM-16 2   
12.5-12/CM-17 4   
12.5-15/CM-18 2   
12.5-15/CM-19 2   
12.5-15/CM-20 4   
19.0-15/CM-21 2   
19.0-15/CM-22 2   
19.0-20/CM-23 2   
19.0-20/CM-24 2   
19.0-20/CM-25 2   
19.0-12/CM-26 2   
19.0-20/CM-27 2   
19.0-18/CM-28 2   
19.0-25/CM-29 6   
19.0-15/CM-30 2   
19.0-30/CM-31 4   
19.0-15/CM-32 4   
19.0-10/CM-33 2   
19.0-20/CM-34 2   
19.0-15/CM-35 2   
19.0-20/CM-36 2   
19.0-15/CM-37 2   
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4.3.4.2 50 and 75% RAP Mixtures 

Initially, an experimental design was created to investigate the volumetric 

properties of high RAP-WMA for base mixtures.  Factors of RAP source, RAP content 

and warm mix additive dosage rate were investigated.  The experimental design 

encompassing twelve factor-level combinations is provided in Table 4.12.  All the 

mixtures were 12.5 mm NMAS, designed with 50 gyrations compactive effort, and 

mixing and compaction temperatures were 116 C.  Optimum design asphalt contents 

were estimated for each experimental treatment as well as tensile strengths with IDT test 

at 25 C.  The results were used to guide additional testing and the only four of the 

mixtures were selected for performance testing as discussed in the following paragraphs. 

To investigate performance of 50 to 75% RAP in WMA for highway surface 

applications, an experimental design was created to include factors of RAP content and 

RAP source; the R-3 RAP source was not included.  The experimental design and 

mixture identification is provided in Table 4.13.  All the mixtures were 12.5 mm NMAS, 

designed with 50 gyrations compactive effort, and contained 1.0% Sasobit®.  Properties 

of the mixtures were given in Section 3.5.4.2. 

 
 

Table 4.12 Highway Base Mixtures Volumetric Experimental Design 
 

RAP Warm Mix RAP Source   
Content Additive R-1 R-2 R-3 
50% 1.0 % Sasobit® X X X 
 1.5% Sasobit® X X X 
75% 1.0 % Sasobit® X X X 
 1.5% Sasobit® X X X 
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Table 4.13 Highway Base Mixtures Performance Experimental Design 
 

 RAP Source  
RAP Content R-1 R-2 
50% 12.5-50/RM-1 12.5-50/RM-2 
75% 12.5-75/RM-1 12.5-75/RM-2 

 
 
 
For the recycled mixtures, a suite of testing was performed as detailed in Table 

4.14; the values in each row for a mixture indicate the number of replicates tested for 

each test type and condition.  Performance was evaluated in four categories; 1) rutting 

(APA and dry PURWheel); 2) durability (Cantabro); 3) tensile strength (IDT); and 4) 

moisture damage (TSR and wet PURWheel). 

 
 

Table 4.14 Performance Testing and Replication of 50 and 75% RAP Recycled 
Mixtures 

 
  Mixture    
Compaction 
Type Test Parameters 

12.5-50/ 
RM-1 

12.5-50/ 
RM-2 

12.5-75/ 
RM-1 

12.5-75/ 
RM-2 

SGC APA 7% Va 2 2 2 2 
 APA 10% Va 2 2 2 2 
 TSR 7% Va 1 1 1 1 
 Cantabro Un-aged, Ndes 3 3 3 3 
 IDT 25 C 2 2 2 2 
LAC PURWheel   Dry 2 2 2 2 
 PURWheel   Wet 2 2 2 2 
APA A replicate consisted of a single track in the test equipment composed of 

two 150 mm diameter specimens. 
TSR A replicate consisted of six specimens tested according to ASTM D 4867. 
Cantabro A replicate consisted of one SGC compacted specimen. 
IDT A replicate consisted of one SGC compacted specimen. 
PURWheel A replicate consisted of two specimens cut from a single LAC compacted 

slab and tested side by side at the same time. 
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CHAPTER 5 
 

CHARACTERIZATION OF RAP PROPERTIES 
 
 

5.1 Overview of RAP Characterization 

A rational yet practical approach to mix design incorporating reclaimed asphalt 

pavement (RAP) in high quantities (e.g. over 25%) needs methods that can account for 

more than just the total asphalt content and gradation of the RAP.  Two RAP sources 

with the same total asphalt content and gradation could perform very differently in a 

mixture depending on factors including the amount of absorbed bituminous material and 

the condition of the bituminous material on the surface of the aggregate.  Initially the 

bitumen of these two sources could have been very different, moderately different, or the 

same depending on factors including the application and mix design method (Superpave, 

Marshall, or Hveem).  In service, the aging of these two sources could have been very 

different, moderately different, or the same depending on factors including compaction, 

traffic, distresses, and environmental conditions.  These two RAP sources should not be 

treated equally in a new mixture unless they are characterized such that it is justifiable to 

do so, and current practice does not have methods in place to make such an assessment. 

In current practice, none of the factors that led to the amount of bituminous 

material or its condition (e.g. mix design method, field aging) for a given RAP source 

would be known to the designer of the new mixture.  The amount of absorbed bitumen 

relative to the amount of total bitumen would be a function of the mix design method, 
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and the grade of the bitumen on the surface of the aggregates would be a function of 

many variables.  A method that focuses on the current properties is appropriate, as what 

led to the current properties of the bitumen is secondary to the properties themselves. 

The debate over RAP properties has intensified in recent years due to decreasing 

budgets coupled with rising raw material prices.  Key aspects of RAP behavior that have 

been debated include if and to what extent the bituminous material within RAP re-livens 

and contributes to compaction and performance of the new mixture.  Figure 5.1 provides 

evidence that two of the key aspects of the RAP debate (heating temperature and heating 

time) affect the extent the bituminous material re-livens in a new mixture.  Warm mix 

technologies are the key issue related to heating temperature, and asphalt production 

methods are the key issue related to heating time. 

Figure 5.1a investigates the effect of heating temperature by compacting 100% R-

1 RAP without virgin binder at varying temperatures.  Raw data is found in Howard et al. 

(2009).  Better compaction occurred as the temperature was increased. 

Figure 5.1b was intended to crudely approximate RAP heating during plant 

production (i.e. investigate effects of heating time) using 9.5-100/RM-1 (Raw data 

provided in Doyle and Howard 2010b).  Typical methods of introducing RAP during 

plant production result in a short but intense level of heating; arguably this will heat the 

surface of RAP particles but may not fully heat the RAP before virgin binder is added.  

After mixing and before compaction, RAP has time to absorb additional heat from the 

virgin aggregate while in storage silos or during transport.  Two Gmm samples were 

prepared according to the same procedure; one was aged for 60 minutes and the other 
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was aged for 1440 minutes.  Results of testing the two Gmm samples were nearly identical 

and were averaged for calculation of air voids. 

Average air voids decreased as the short term aging time increased up to 180 

minutes and thereafter average air voids increased.  The maximum compaction occurred 

at 180 minutes of short term aging time (195 minutes total heating time).  These results 

indicate that the addition of heat to the RAP after coating with virgin binder is beneficial 

to compaction, but that longer aging times are likely stiffening the virgin binder coating 

the RAP and ultimately hindering compaction relative to lesser aged virgin binder.  It is 

unclear what effects longer storage times might have on high RAP mixes during plant 

production since asphalt storage silos limit exposure to oxygen in contrast to the forced-

draft oven aging performed herein.  The total heating time that resulted in optimum 

compaction for this experiment was approximately 195 minutes; this is close to the total 

heating time for RAP used for the rest of this study of 210 minutes (see Section 3.4). 

The Figure 5.1 data shows that RAP bitumen on the aggregate surface is affected 

by the conditions encountered and that a portion of the bitumen remains inert (i.e. acts as 

aggregate) while the rest is effective and re-livens (i.e. facilitates compaction and then 

acts as binder though perhaps differently than when originally used).  The remainder of 

the RAP bitumen is absorbed in the aggregate pores.  A total of three types of bituminous 

materials are present within RAP: effective surface, inert surface, and absorbed. 
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       a) Heating Temperature                                  b) Heating Time 

 
Figure 5.1 Effect of Heating Temperature and Heating Time on RAP 

 
 
 
Compaction is arguably the key characteristic of mix design and the lubrication 

provided by bituminous material is arguably the key characteristic that facilitates 

compaction of a given aggregate structure.     The approach taken in this paper is not able 

to consider the relative effects of compaction between bituminous material with different 

lubrication characteristics.  This is a limitation as Figure 5.1b shows the effects of 

different amounts of binder aging on compaction. 

A meaningful discussion related to lubrication effects of aged RAP bituminous 

material and virgin asphalt is premature until an estimate of the quantity of aged 

bituminous material is available.  Bituminous material that was originally absorbed into 

the aggregate pores is not available to lubricate aggregates during compaction.  Some of 

the bituminous material that was originally part of the lubricating material is believed to 

be inert in many conditions when used as RAP in a new mixture.  The reminder of the 

bituminous material that was part of the original lubricating material would aid in 
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lubrication in the new mixture but would be stiffer and as a result would not lubricate as 

much in the new mixture.   

The component diagram of RAP provided in Figure 5.2 builds on the results of 

Figure 5.1 and is the focus of the rest of the analysis.  The first issue addressed was 

prediction of absorbed bitumen, Pba(R), within RAP pores as prediction of this parameter 

has not previously been possible on a large scale such as within the operations of a state 

DOT.  The second issue was characterization of the RAP surface asphalt and decoupling 

ineffective and effective surface asphalt (Pbi(R) and Pbe(R), respectively).  All terms are 

defined on a mixture mass basis; as a result do not necessarily have the same numerical 

value.  For example, adding virgin binder (Pbe(V)) would change the numerical value of 

absorbed bitumen (Pba(R)) even though the mass of bitumen absorbed has not changed. 

 
 

 
 
Figure 5.2 Component Diagram for RAP Mixtures 
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been attempted to the knowledge of the authors.  This chapter presents the results of such 

an analysis using data from all MDOT approved mix designs over the past several years 

alongside testing of 100% RAP with added virgin binder.  The database of mix designs 

was used to develop regression equations for prediction of properties that have previously 

posed difficulty.  The approach was developed in a manner that does not require inputs 

that have been shown problematic to measure on extracted RAP aggregates (e.g. Gsb).  

The analysis assumes RAP in Mississippi is fully represented by the database used to 

develop the regression equations.  Testing of 100% RAP was used to compliment the 

database regression in some instances, while other 100% RAP testing was used to verify 

quality of the regression; the analysis uses extraction only to measure total asphalt 

content. 

The analysis was developed in a manner focused on practical implementation.  

Key items of consideration were that: 1) it is difficult to accurately measure Gsb on RAP 

aggregates after bitumen is extracted; 2) it is difficult to accurately measure Gmm of RAP 

as received from a producer stockpile due to dust on the surface of the particles, micro 

cracks in aged bitumen allowing water absorption, and similar; and 3) it is not difficult to 

accurately measure Gmm of RAP when coated with sufficient virgin asphalt.  Justification 

of this approach is provided throughout the chapter. 

 
 

5.2 MDOT Asphalt Mixture Database 

Properties of all mix designs approved by MDOT between January 2005 and 

March 2010 were provided by the Materials Division and used for analysis.  Data 

obtained for each asphalt mixture included combined properties of the aggregate blend, 
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compactive effort, asphalt binder grade, and mixture volumetric properties.  Also 

included were individual aggregate stockpile proportions, aggregate types, aggregate 

water absorptions, and stockpile gradations.  For mixtures that contained RAP, the RAP 

total asphalt content, extracted aggregate gradation, and extracted aggregate water 

absorption were included.  The data needed for the analysis is maintained by MDOT in a 

database where all approved mix designs are in a standard format, making the approach 

feasible.  The approach could probably be implemented by other state DOT’s as they 

likely maintain similar information in some type of organized fashion. 

The raw data was arranged by nominal maximum aggregate size (NMAS) and 

design compactive effort (i.e. of 50, 65, and 85 gyrations).  The database contained a total 

of 837 entries; 369 were 9.5 mm, 244 were 12.5 mm, and 224 were 19.0 mm NMAS. 

Not all 837 database entries were unique in terms of volumetric properties.  In a 

number of cases there were two mixes with identical aggregate and volumetric properties.  

In most instances these duplicate cases resulted from re-approvals of existing mix designs 

with different binder grades or different binder sources.  The duplicate cases were 

removed from the dataset as they do not represent unique volumetric mixture 

combinations, which reduced the number of mixes to 590. 

The overwhelming majority of mixtures contained combinations of gravel, 

limestone, sand, and RAP though not all mixtures contained all these aggregate types.  

Twenty-two mixtures (3.7% of the total) were removed from the data set since they 

contained other aggregate types.  The unusual aggregate types removed were: granite (19 

mixes), slag (1 mix), sandstone (1 mix), and crushed concrete (1 mix).  Removal of these 

22 mixes left 568 for use in analysis.  Of the 568 mixes, 93% or 529 contained RAP. 



www.manaraa.com

166 

The dataset was considered to be the population of asphalt properties in 

Mississippi.  This is a reasonable approach with all the approved mixtures statewide over 

a period in excess of five years.  A key component of the investigation is the assumption 

that asphalt placed within the past five years represents the RAP being used in present 

day.  This is a reasonable assumption for Mississippi within the jurisdiction of the 

Mississippi DOT. 

 
 
5.2.1 Asphalt Contents of Mississippi Mixtures 

Figure 5.3 presents relative frequency histograms and boxplots of total, effective, 

and absorbed asphalt contents for the mixtures.  Examination of the relative frequency 

histograms of total and effective asphalt content (Figure 5.3a and Figure 5.3c) reveals a 

relatively wide spread of values and no clearly defined peak.  The effective asphalt 

content standard deviation is lower than the total asphalt content standard deviation.  The 

coefficients of variation (COV) for the two populations are nearly the same 

(approximately 10%).  From the boxplot of total asphalt content (Figure 5.3b) it can be 

observed that as the NMAS of the aggregate gradation increases, the total asphalt content 

decreases as expected. 
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        a)  Relative Frequency Histogram of Pb       b)  Boxplot of Pb 

 
        c)  Relative Frequency Histogram of Pbe       d)  Boxplot of Pbe 

 
        e)  Relative Frequency Histogram of Pba(mix)            f)  Boxplot of Pba(mix) 

 
Figure 5.3 Summary Asphalt Content Results 
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The same observation can be made from the effective asphalt boxplot (Figure 

5.3d).  It is evident that an increase in compactive effort during mix design results in a 

decrease in effective asphalt content.  This is expected since a greater compactive effort 

during mix design requires less effective asphalt to achieve a target level of air voids. 

Examination of the absorbed asphalt relative frequency histogram (Figure 5.3e) 

indicates a general peak and an approximately normal distribution that is in contrast to 

the distributions of total and effective asphalt.  The COV is approximately four times 

higher for the absorbed asphalt distribution.  The boxplot of effective asphalt contents 

(Figure 5.3f) reveals little difference in mean absorption values with changes in 

compactive effort. The lack of change in mean absorbed asphalt content for changing 

compactive effort is expected since compactive effort does not affect aggregate 

absorptive capacity.  It is interesting to note that the differences in absorbed asphalt 

content for different NMAS are quite small.  One reason could be crushing the same base 

aggregate source to produce different gradations, since absorption is a general 

characteristic of the gravel or stone source. 

Table 5.1 summarizes the mixtures contained in the dataset as well as the ranges 

of their total, effective, and absorbed asphalt contents.  A few observations are indicated 

in the boxplots of total and effective asphalt content as potential outliers.  While unusual, 

these observations were left in the dataset because they represent real mixtures and are 

part of the population of asphalt mixtures in Mississippi.  These mixtures, however, were 

not shown in Table 5.1 as they detract from the point of the table. 

The total asphalt content range over the five year period covered by this dataset 

was 4.1 to 7.0%.  Note the wide range in absorbed asphalt in Table 5.1; absorbed asphalt 
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content is seen to range from 0.03 to 1.33%.  By defining Pba(mix) as a percentage of the 

total mixture, total asphalt content is the sum of absorbed and effective asphalt contents.  

MDOT uses this definition of absorbed asphalt for their mix designs. 

 
 

Table 5.1 Summary of 568 Unique Mixtures in MDOT Mixture Dataset 
 
  No. of Range of Pb Range of Pbe Range of Pba(mix)

NMAS Ndes Mixtures max min max min max min
9.5 mm 85 80 6.30 5.10 5.57 4.69 1.05 0.21
 65 75 6.50 4.70 5.74 4.69 1.29 0.06
 50 73 7.00 5.00 6.07 4.83 1.17 0.04
 9.5 mm Mixes 228 7.00 4.70 6.07 4.69 1.29 0.04
12.5 mm 85 73 6.10 4.80 5.11 4.27 1.33 0.03
 65 49 6.20 4.70 5.13 4.28 1.08 0.09
 50 45 6.00 4.60 5.34 4.36 0.94 0.18
12.5 mm Mixes 167 6.20 4.70 5.34 4.27 1.33 0.03
19.0 mm 85 68 5.60 4.10 4.94 3.80 1.17 0.20
 65 54 5.70 4.10 4.81 3.80 1.19 0.19
 50 51 5.90 4.20 4.46 3.97 1.31 0.08
19.0 mm Mixes 173 5.9 4.10 4.94 3.80 1.31 0.08
All Mixes 568 7.00 4.10 6.07 3.80 1.33 0.03
Notes: The term Pba(mix) is defined on the basis of total mass of asphalt mixture and not 

on aggregate mass.  Outliers have been removed from the data in this table. 
 

 
 
5.2.2 Water Absorption of Mississippi Aggregate Sources 

Aggregate stockpile data was sorted into limestone, sand, and gravel categories 

based on identifying information in the database.  Water absorption relative frequency 

histograms for the three aggregate categories as well as the combined aggregate blends 

are provided in Figure 5.4.  Discussion of each of the aggregate types and the aggregate 

blends follows. 

The limestone histogram (Figure 5.4a) has a distribution with a mean of 0.91%, 

no clear peak value, and a slight right skew.  A possible explanation is that Mississippi 
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has no substantial native sources of limestone so essentially all limestone aggregate is 

imported from areas such as Kentucky and Alabama.  The data could be a reflection of 

important quantities from different locations as they likely have different absorption 

properties.  Overall, 80% of the limestone water absorption values fall in a range of about 

0.35 to 1.75%. 

 
 
 

   
        a)  Limestone                          b)  Sand  
 

   
         c)  Gravel             d)  Combined Aggregate Blends  

 
Figure 5.4 Summary Water Absorption Results 
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The Figure 5.4b sand distribution has a peak that is near the mean value of 0.86% 

but is severely right skewed.  The MDOT database does not have a clear definition of 

what constitutes sand, which could explain some of the skew.  The aggregate identified as 

sand could be naturally occurring aggregate (i.e. clean but un-crushed) or contain 

manufactured materials (i.e. crushed aggregate) that could have very different water 

absorption values.  Overall, 80% of the sand water absorption values fall in a range of 

about 0.40 to 1.55%, which is similar to the limestone data. 

The crushed gravel histogram (Figure 5.4c) reveals a wide distribution with no 

clear peak.  This is likely due to variations in geology between aggregate sources from 

around the state.  Overall, 80% of the gravel water absorptions fall in a range of about 

1.25 to 3.45%. 

Figure 5.2d plots composite aggregate blend water absorption results.  In contrast 

to the individual aggregate sources, the distribution is approximately normal with a peak 

near the mean value of 1.53%.  Overall, 80% of the aggregate blend water absorption 

values fall in a range of about 0.80 to 2.25%. 

 
 

5.2.3 Gradation of Mississippi Aggregate Sources 

Figure 5.5 plots percent fines and surface area (SA) for all aggregate blends.  The 

percent fines distribution appears generally normal in shape with a mean of 5.45% but 

with a slightly higher proportion of values below the mean than above.  The surface area 

distribution appears normal in shape with a mean of 5.34 m2/kg and a few extreme values 

to the far right of the distribution. 
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        a)  Gradation Passing 0.075 mm Sieve           b)  Surface Area 

 
Figure 5.5 Summary Aggregate Blend Results 

 
 
 

5.2.4 Mississippi RAP Properties 
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5.6d) has a mean value of 7.86 m2/kg and two peaks on either side of the mean value.  In 

a few cases, surface area exceeded 10.0 m2/kg, and these cases were those in Figure 5.6c 

with a high fines (i.e. passing 0.075 mm sieve) content. 

Since RAP was formerly new asphalt mixture it is informative to compare the 

distributions of RAP and current MDOT mixture properties.  Table 5.2 presents the 

results of unequal variance t-test comparisons between RAP and current mixture 

properties.  The mean RAP total asphalt content is significantly lower than the mean total 

asphalt content for MDOT mixtures; the difference is 0.21%.  The variances of the two 

distributions are nearly identical which suggests that the distributions are quite similar 

except for their mean values.  Possible reasons for the lower RAP asphalt contents 

include testing error resulting in lower total asphalt contents (e.g. incomplete extraction 

of RAP asphalt), loss of asphalt volatiles during service life, or actual loss of asphalt 

during the reclaiming process (e.g. during milling and handling).  Another potential 

explanation for this result is that mixtures designed according to earlier versions of 

MDOT specifications (i.e. higher design compactive effort) resulted in generally lower 

asphalt contents than the current mix design specifications. 
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        a) Total Asphalt Content      b)  Extracted Aggregate Water Absorption 

 

  
        c)  Percent Passing 0.075 mm Sieve            d) Extracted Gradation Surface Area 

 
Figure 5.6 Summary RAP Results 
 
 
 

The mean water absorption of extracted RAP aggregate is significantly lower than 

the mean combined aggregate blend water absorption values of current MDOT mixtures; 

the difference is 0.24%.  Lower aggregate absorption values for RAP imply that values of 

RAP aggregate Gsb values are also lower.  This aligns with the results found in several 

sources cited in the literature review that aggregate Gsb is often lower for extracted 

aggregate than for virgin aggregate.  The mean percent passing the 0.075 mm sieve (i.e. 

fines) for RAP aggregate is significantly higher than for current MDOT mixtures; the 
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difference is about 2.4%.  The increased fines are likely due to aggregate degradation 

(milling in particular). 

 
 

Table 5.2 Unequal Variance t-test Test Comparison of RAP to Mixture Properties 
 
Category Material n Mean Var. t-stat t-crit Significantly Different?
Asphalt RAP 529 5.19 0.335 5.82 ±1.96 Yes 
Content Mixtures 568 5.40 0.337    
Abs RAP 529 1.30 0.150 -8.19 ±1.96 Yes 
 Mixtures 568 1.54 0.311    
P200 RAP 529 7.82 2.662 30.49 ±1.96 Yes 
 Mixtures 568 5.45 0.592    
Note:  Significance testing performed at the 95% confidence level. 

 
 
 

5.3 Results of RAP Aggregate Sorting Procedure 

To evaluate the usefulness of the aggregate sorting procedure for extracted RAP 

aggregate described in the experimental program, two regression equations were 

developed using the aggregate data in the mixture database.  The first regression was of 

LST+4.75 to total limestone aggregate in the mixture (Figure 5.7a).  The correlation is 

reasonable (R2 = 0.92) but there is some scatter in the data. 

The second regression was of LST+2.36 to total limestone aggregate in the mixture; 

this is shown in Figure 5.7b.  The correlation is better (R2 = 0.97) than for the regression 

developed for coarse aggregate retained on the 4.75 mm sieve.  A very reasonable 

estimation of the percentage of total limestone aggregate in an aggregate blend can be 

determined by using the aggregate sorting procedure developed as part of this research 

project.  This procedure is used later in the chapter as an input for regression equations 

for prediction of RAP properties. 
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          a)  Retained on 4.75 mm Sieve                          b)   Retained on 2.36 mm Sieve 

 
Figure 5.7 Correlation of Coarse Limestone Aggregate to Total Limestone Aggregate 
 

 
 

5.4 Correlation of Water and Asphalt Absorption 

A regression equation was developed relating absorbed asphalt to aggregate water 

absorption, which is shown in Figure 5.8.  A correlation does exist as asphalt absorption 

is on the order of one third of aggregate water absorption.  However, there is a noticeable 

amount of scatter in the data (R2 = 0.51).  The relationship is similar to that found by 

Kandhal and Khatri (1992) discussed in the literature review.  Prediction of absorbed 

asphalt using water absorption would require measurement of water absorption on 

aggregates extracted from RAP, which was found to be variable during literature review.  

This does not appear to be the optimal approach to estimate absorbed asphalt in RAP. 
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Figure 5.8 Use of Aggregate Water Absorption to Estimate Asphalt Absorption 

 
 
 

5.5 RAP Absorbed Asphalt 

Evidence is provided in this section that Gse can be reliably and efficiently 

determined by measuring Gmm on RAP coated with additional virgin binder.  The 

evidence is supported by data showing RAP does not absorb noticeable amounts of virgin 

asphalt.  The evidence is also supported by discussion related to the difficulty of 

conducting Gmm on RAP versus the ease of determining Gmm on RAP coated with virgin 

binder. 

 
 
5.5.1 RAP Absorbed Asphalt Experiment 1 

The propensity of RAP to absorb additional virgin asphalt was investigated using 

the methods described in Section 4.3.1.3.  R-1 RAP was heated and short term aged at 

116 C and 138 C in conjunction with three total asphalt contents (PAC) as given in Table 

4.2.  Raw data is provided in Doyle and Howard (2010b), and the raw Gmm values were 
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used to calculate Gse values.  Asphalt binder specific gravity (Gb) of 1.03 was assumed 

for all calculations. 

A pooled variance t-test was used to compare replicates containing Sasobit® and 

Evotherm™ 3G to the replicates without warm mix additives (Table 5.3).  Results 

indicated no significant difference in the mean values for either comparison.  In that there 

were no statistical differences in the data, all the data with and without warm mix 

additives at a given temperature and asphalt content was grouped together for the next 

step in the analysis. 

An ANOVA test was then performed on the Gse data and the results are provided 

in Table 5.4.  The interaction of temperature and total asphalt content was not significant.  

Also, RAP heating and short term aging temperature were not found to be significant 

parameters.  Likewise, RAP total asphalt content was not found to be a significant 

parameter. 

Temperature and warm mix additives were not considered for the two remaining 

RAP sources.  The three total asphalt contents tested are given in Table 4.2.  The raw data 

is provided in Doyle and Howard (2010b); the data was used to calculate Gse.  Tables 5.5 

and 5.6 provide results of ANOVA analyses and based on the results, RAP total asphalt 

content was not found to be a significant parameter for Gse results for the R-2 and R-3 

RAP sources. 

The results indicate that the warm mix temperatures tested did not induce any 

additional asphalt absorption for the R-1 RAP source.  Warm mix additives did not 

induce any additional absorption of asphalt for the R-1 RAP source.  The amount of 
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virgin asphalt added did not affect determination of aggregate Gse for the R-1, R-2, or R-3 

RAP sources. 

 
 

Table 5.3 Pooled Variance t-test Test for Gse of R-1 RAP 
 
Comparison n Mean Var. t-stat t-crit Significantly Different?
None 12 2.581 1.02x10-4 1.56 ±2.30 No 
Sasobit® 12 2.575 4.36x10-5    
None 12 2.581 1.02x10-4 1.48 ±2.30 No 
Evotherm 3G™ 12 2.574 1.39x10-4    
Note:  Significance testing performed at the 95% confidence level. 

 
 
 

Table 5.4 ANOVA Test for Gse of R-1 RAP 
 
Source df SS MS Fcalc Pvalue Significant?
Temp 1 0.0002609 0.0002609 3.04 0.091 No 
PAC 2 0.0005409 0.0002705 3.15 0.057 No 
Temp * PAC 2 0.0000590 0.0000295 0.34 0.712 No 
Error 30 0.0025735 0.0000858    
Total 35 0.0034344     
Note:  Significance testing performed at the 95% confidence level. 

 
 
 

Table 5.5 ANOVA Test for Gse of R-2 RAP 
 
Source df SS MS Fcalc Pvalue Significant?
PAC 2 0.0000418 0.0000209 0.80 0.525 No 
Error 3 0.0000779 0.0000260    
Total 5 0.0001197     
Note:  Significance testing performed at the 95% confidence level. 

 
 
 

Table 5.6  ANOVA Test for Gse of R-3 RAP 
 
Source df SS MS Fcalc Pvalue Significant?
PAC 2 0.0001409 0.0000705 3.92 0.145 No 
Error 3 0.0000539 0.0000180    
Total 5 0.0001948     
Note:  Significance testing performed at the 95% confidence level. 
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5.5.2 RAP Absorbed Asphalt Experiment 2 

The potential for asphalt absorption to be affected in RAP under varying 

conditions was investigated using the R-1 and R-3 RAP sources.  Details are provided in 

Section 4.3.1.4.  Doyle and Howard (2010b) contains the raw data and Table 5.7 provides 

the results of this experiment. 

The as-received (un-heated) data provided a baseline measurement of the RAP 

aggregate absorbed asphalt.  The data after 120 minutes of heating provided a 

measurement of whether any additional RAP asphalt was absorbed by the RAP 

aggregate.  The sample without short term aging provided a baseline measurement of new 

asphalt absorption for the mixture.  The 4 hour short term aging period at standard hot 

mix temperature (146 C) was selected to be very favorable to new asphalt absorption and 

to represent the best possible opportunity for additional asphalt absorption by the RAP 

aggregate. 

 
 

Table 5.7 Results of Absorbed Asphalt Experiment 2 
 
Material  PAC  

Tested Condition (%) Gmm
a Gse

R-1 + 0% Pbe(V) As received 5.5 2.382 2.579 
R-1 + 0% Pbe(V) 2 hr heat at 171 C 5.5 2.373 2.567 
R-1 + 2% Pbe(V) 2 hr heat at 171 C, no aging 7.4 2.315 2.571 
R-1 + 2% Pbe(V) 2 hr heat at 171 C, 4 hr aging at 146 C 7.4 2.319 2.577 

R-1 Gse Summary: Average 2.574    Range 0.012
R-3 + 0% Pbe(V) As received 5.0 2.415 2.599 
R-3 + 0% Pbe(V) 2 hr heat at 171 C 5.0 2.422 2.608 
R-3 + 2% Pbe(V) 2 hr heat at 171 C, no aging 6.9 2.351 2.598 
R-3 + 2% Pbe(V) 2 hr heat at 171 C, 4 hr aging at 146 C 6.9 2.358 2.608 

R-3 Gse Summary: Average 2.603    Range 0.010
a)  Average of two measurements. 
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The difference in Gse results for the two tested conditions is 0.012 for R-1 and 

0.010 for R-3.  Both differences are less than the allowable range of 0.014 for four 

determinations of Gmm by a single operator.  The results indicate that a negligible amount 

of additional asphalt (aged or virgin), if any, is absorbed by the R-1 or R-3 RAP 

aggregates during laboratory heating and short term aging.   

For uncoated RAP there is a tendency for fine material to be lost during the test as 

evidenced by the dark cloud that appears in the water bath while obtaining the submerged 

mass of the sample.  Also, broken RAP aggregate surfaces produced during the milling 

process could affect test results.  It is much easier to obtain accurate Gmm measurements 

for Gse calculation with RAP coated with an additional 2% virgin asphalt on a mixture 

mass basis than with only the RAP.  Table 5.7 provides evidence the approach is also 

accurate.  Figure 5.9 illustrates the differences between as received RAP and that coated 

with virgin asphalt.  R-3 RAP was shown as it had the most uncoated aggregates of the 

sources tested.  Some aggregate had stripped during service, but test data showed the 

asphalt remained in the aggregate pores leading to consistent Gse measurements.  RAP 

that has been contaminated with base material that has never been coated with asphalt 

would cause difficulty, whereas stripped aggregate does not appear to cause difficulty. 

The data presented in this section shows that the asphalt absorbed and measured 

during the mix design process (Pba(mix)) is equivalent to absorbed RAP asphalt (Pba(R)) for 

practical purposes.  The numerical value of either Pba(mix) or Pba(R) will vary depending on 

the amount of Pbe(V) being considered since they are defined on a mixture mass basis.  As 

Pbe(V) increases Pba(R) decreases.  Numerically, Pba(R) is a maximum when Pbe(V) is zero, 

but it should be understood that the amount of asphalt absorbed in the RAP is not 
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changing rather the total mix mass is increasing and making the amount of absorbed 

asphalt less of the total mix mass.  The remainder of the chapter uses Pba(R) to define 

asphalt absorbed into RAP pores since it is one of the key parameters under investigation. 

 
 

 
 
Figure 5.9 Loose R-3 RAP Samples With and Without Virgin Binder 

 
 
 

5.6 Prediction of RAP Absorbed Asphalt 

Regression equations were developed to relate the measurable properties of a 

RAP source (either directly or indirectly) to absorbed asphalt.  The measurable properties 

of a RAP source for purposes of this analysis were: Gse, Pb(R), SA, LST+2.36, and similar 

properties that can be determined knowing only the total asphalt content and having 

extracted RAP aggregate.  Surface area (SA) can be computed based on the percent 

passing each sieve size and standard surface area factors according to the method 

presented in Roberts et al. (1991).  Figure 5.7 was used to select LST+2.36 to represent the 

percentage of limestone in the mixture.  The remaining terms are conventional.  

Development of regression equations that required inputs not available within current 

As Received +2% Pbe(V) 
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practice or that required inputs shown problematic in literature (e.g. Gsb) were not 

attempted since they are less practical than equations that can be developed with 

practically measured inputs. 

The most desirable approach was to be able to predict Pba(R) directly from 

regression, and the next most desirable approach was to be able to predict Gsb and use 

volumetric relationships to calculate Pba(R).  Regression equations were developed in a 

step-wise fashion where all input variables under consideration were used to predict the 

output of interest.  Input variables that did not affect the prediction were removed until all 

variables remaining affected the calculated output variable.  Direct Pba(R) calculation 

could not produce R2 values greater than approximately 0.6.  The best regression 

equation for calculation of Gsb is provided in Eq. 5.1.  Eq. 5.2 is the standard volumetric 

equation used in conjunction with the values calculated in Eq. 5.1 to determine Pba(R). 

[ ] ( )min,max 21.111 0.329 0.0156sb seG G zα= − ±  R2 = 0.94 n = 568 (Eq 5.1) 

     
( ) ( ) ( )( ) ( )

100 se sb
bba R ba mix b R

sb se

G G
P P P G

G G

−
= = −  (Eq 5.2) 

Where: 

Gsb = oven dry bulk specific gravity of RAP aggregate from Eq. 5.1 

Gse = effective specific gravity of RAP aggregate measured on coated particles 

Gb = specific gravity of asphalt binder (assumed to be 1.03) 

Pb(R) = total RAP asphalt content measured by ignition or extraction methods (%) 

Pba(R) = absorbed asphalt in the RAP source by mixture mass (%) 

Pba(mix) = absorbed asphalt by mixture mass from the MDOT database (%) 

zα/2 = statistical coefficient accounting for variability in the prediction of Gsb  
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The prediction method does not require sophisticated inputs, and its correlation is 

very reasonable.  Figure 5.10 provides a visual representation of the prediction ability of 

Eq. 5.1 within the activities of MDOT; values were computed with zα/2 equal to zero.  The 

data in Figure 5.10 is distributed closely and evenly around the line of equality indicating 

no consistent errors associated with the prediction.  A zα/2 value of 1.96 representing a 

95% confidence level was used to compute the prediction interval band shown in Figure 

5.10. 

 
 

 
 
Figure 5.10 Comparison of Measured and Predicted Gsb 

 
 
 
The uncertainty term in Eq. 5.1 represents variability in the fundamental 

properties of the asphalt mixtures that cannot be accounted for by any statistically 

significant and physically meaningful properties that can be readily and reliably 

measured for RAP in current practice.  For practical purposes the 95% prediction interval 

of Figure 5.10 is equivalent to the single operator repeatability (d2s) index for 

measurement of Gsb on fine aggregate as given in both AASHTO T 84 and ASTM C 128 
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(0.031 vs. 0.032).  The prediction interval range of 0.031 is slightly wider than the coarse 

aggregate (d2s) repeatability index of 0.025 given in both AASHTO T 85 and ASTM C 

127.  Overall the ability of the equation to explain the relationship of Gse to Gsb is on the 

order of the accuracy of Gsb measurement. 

Figure 5.11 provides pertinent data in terms of the increase in Gse relative to Gsb 

and how that behavior equates to measured Pba(R) values in the database.  Interestingly Gse 

never exceeds Gsb by more than 0.10.  Based on Figure 5.11 increasing Gse by 0.01 

corresponds to an approximate increase in Pba(R) of 0.15 to 0.20% indicating small errors 

in Gsb or Gse result in considerable errors in Pba(R). 

 
 

 
 
Figure 5.11 Relative Frequency Histogram of Measured (Gse - Gsb) 

 
 
 
The error associated with the Eq. 5.1 prediction can be seen using Figure 5.11 and 

Figure 5.12.  Figure 5.12 plots the data used to develop Eq. 5.1, and shows the best fit 

trend line (i.e. zα/2 = 0) and the 95% prediction interval (i.e. zα/2 = ± 1.96).  The minimum, 

median, and maximum Gse values are 2.485, 2.584, and 2.756 respectively.  Using Eq. 
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5.1 with zα/2 of zero, Gse minus Gsb terms are 0.053, 0.042, 0.023 respectively.  As seen in 

Figure 5.11, Eq. 5.1 does not encompass the 95% confidence interval of measured Gse 

minus Gsb which is 0.011 to 0.073.  Eq. 5.1 and Eq. 5.2 with zα/2 of zero are only capable 

of predicting Pba(R) of 0.30 to 0.86% while the 95% confidence interval of Pba(R) was 0.13 

to 1.13% and the total interval with outliers removed was 0.03 to 1.33%.  

Error in the prediction using 95% confidence interval data coupled with the 

approximate increases of Pba(R) with increases of Gse minus Gsb results in approximately 

0.4% increase in Pba(R) that cannot be explained by the Figure 5.12 trend line.  Likewise, 

approximately 0.25% decrease in Pba(R) cannot be explained by the Figure 5.12 trend line.  

When error in the prediction is considered the distribution of Pba(R) is fully encompassed.  

Error of 0.25% below the interval and 0.40% above the interval is not out of line with the 

differences that would occur in calculation of absorbed asphalt due to measurement error 

of Gsb according to (d2s) limits. 

The approach provided in this section is not capable of predicting an exact value 

of Pba(R), though it can provide a reasonable value and a range that is very unlikely to be 

exceeded.  The approach also bounds the problem and does not allow Pba(R) values to be 

used that cannot be correct.  The next section provides verification information that 

shows this approach is reasonable to predict Pba(R) and that the values predicted are better 

than current practice for many situations.  The next section also shows that current 

practice reports Pba(R) values that are almost certainly incorrect. 
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Figure 5.12 Comparison of Gse and Gsb Values From Database 

 
 
 

5.7 Evaluation of RAP Absorbed Asphalt Prediction 

The approach developed from the MDOT mixture database for determining Gsb 

and Pba(R) are evaluated in this section.  Five RAP sources were used in the evaluation, 

and the input values and resulting outputs from Eq. 5.1 and 5.2 are provided in Table 5.8.  

Conventionally measured Gsb via AASHTO T 84 and T 85 on extracted RAP aggregate 

was also used to calculate Pba(R) according to standard protocol. 

Table 5.8 Gsb values differ substantially between Eq. 5.1 and T 84, T 85 measured 

values, with Eq. 5.1 predicting higher values in all cases.  This observation is supported 

by literature.  The Gsb values from conventionally measured techniques are very likely 

too low based on the database information as Pba(R) values were 1.13% or less for the 

95% confidence interval for all Mississippi mixes over the last five years.  The likelihood 

of three RAP sources known to come from Mississippi and known to be from different 

pavements exceeding the 95% confidence interval while no data was within the 95% 

confidence interval of such a comprehensive data set is near impossible. 
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Table 5.8 Evaluation of Gsb and Pba(R) Prediction Equations 
 

RAP Gse Eq. 4.1, 4.2 Predicteda  
Conventionally 
Measured 

Source Type n Value Gsb Gse - Gsb Pba(R) Gsb Pba(R)

R-1 Avg. 48 2.577 2.534 0.043 0.18, 0.64, 1.11 2.483 1.43
 Max 48 2.599 2.559 0.040 0.14, 0.59, 1.05   
 Min 48 2.557 2.512 0.045 0.21, 0.68, 1.16   
R-2 Avg. 6 2.605 2.565 0.040 0.13, 0.58, 1.03 2.526 1.17
 Max 6 2.608 2.569 0.039 0.12, 0.57, 1.03   
 Min 6 2.596 2.555 0.041 0.14, 0.59, 1.06   
R-3 Avg. 14 2.608 2.569 0.039 0.12, 0.57, 1.03 2.504 1.66
 Max 14 2.626 2.589 0.037 0.09, 0.54, 0.99   
 Min 14 2.596 2.555 0.041 0.15, 0.60, 1.06   
R-4 Avg. 2 2.596 2.555 0.041 0.14, 0.59, 1.05 --- --- 
R-5 Avg. 2 2.620 2.582 0.038 0.10, 0.54, 0.99 --- --- 
Note:  Pba(R) values shown in this table coincide with Pbe(v) of zero. 
a)  Gsb and Gse - Gsb values shown are for zα/2 of 0 and Pba(R) is for zα/2 of -1.96, 0, and 

1.96, respectively. 
 
 
 
The variability of the method described by Eq. 5.1 and 5.2 can be seen in Table 

5.8.  R-1 RAP with average Gse values has been used for the purposes of discussion, 

though the same concept applies to all RAP sources.  It should be understood that the 

most likely Pba(R) with Mississippi materials for Gse equal to 2.577 is 0.64% and that 

values as low as 0.18% and as high as 1.11% are possible but unlikely.  In a good number 

of cases the actual value for a randomly sampled RAP source would be say 0.52% if 

lower or 0.77% if higher.  In a smaller number of cases, the actual value would be say 

0.38% if lower or 0.83% if higher.  In a fairly small number of cases, the actual value 

would be say 0.21% if lower or 1.06% if higher.  In any instance, the maximum error in 

the prediction would be either 0.64 minus 0.18, or 0.46% if lower or 1.11 minus 0.64, or 

0.47% if higher.  The maximum error is not 1.11 minus 0.18, or 0.93%. 
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The method to predict Pba(R) using Gse on RAP coated with virgin binder was 

shown to be stable using the Table 5.8 data.  R-1 was measured 48 times and the Pba(R) 

value predicted with zα/2 equal to 0 varied at most 0.09%.  Figure 5.11 indicated this level 

of Pba(R) variation could occur with less than 0.01 difference in measurement of Gse minus 

Gsb, which is well within between operator precision in standard test protocols. 

The Gse minus Gsb values shown are reasonable when viewed in terms of the 

relative frequency histogram provided in Figure 5.11.  No RAP was tested with Gse 

values in the upper or lower portions of the Figure 5.11 distribution.  R-4 and R-5 were 

on hand in the laboratory and used for verification, but upon testing it was observed they 

too fall in the central portion of the distribution.  Ideally, dozens of RAP sources could 

have been obtained throughout Mississippi and tested with the proposed and conventional 

methods for comparison. 

 
 

5.8 Effect of Additives and Temperature on RAP Volumetrics 

Three hundred ninety-four 100% RAP specimens were mixed with virgin binder 

and compacted according to the procedures described in Section 3.4; bulk density and air 

voids were determined as described in Section 4.4.1.  The experimental design is 

discussed in Section 4.3.1.2.  The compaction data is presented in terms of PAC and each 

data point represents the average of all replicates for that experimental treatment 

combination.  All of the raw data can be found in Doyle and Howard (2010b). 

Results of the R-1 RAP compaction data at 116 and 138 C are shown in Figure 

5.13 organized by compaction temperature and warm mix additive.  The effect of 

compactive effort is observed in all cases.  As the compactive effort is increased, the air 
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voids generally decrease for a given asphalt binder content.  This result is expected in 

new mixtures and was also observed in the 100% RAP mixtures.   

Figure 5.14 presents the R-1 data for 65 gyrations organized by compaction 

temperature and warm mix additive.  For a specific compaction temperature and 

compactive effort combination the effect of warm mix additives is minimal although 

minor differences are observable at the 138 C temperature.  Note how an increase in 

compaction temperature noticeably reduces the air voids level for the same asphalt 

content and combination of compactive effort and warm mix additive.  Also note that the 

lowest total asphalt content (highest contribution of RAP bitumen) in combination with 

154 C temperature resulted in air voids near 4%. 

Results of the R-2 RAP compaction data with 65 gyrations are presented in Figure 

5.15 organized by compaction temperature. The data exhibits similar trends to the R-1 

compaction data.  Almost no difference is seen in air voids with the addition of warm mix 

additives except at the 154 C compaction temperature where Evotherm™ 3G is observed 

to improve compaction somewhat.  Increasing the compaction temperature reduces the air 

voids.  Note that the lowest total asphalt content resulted in air voids near 4% at 

compaction temperatures of 138 C and 154 C. 

Results of the R-3 RAP compaction data with 65 gyrations are presented in Figure 

5.16 organized by compaction temperature.  The addition of warm mix additives is again 

seen to have little effect on compaction. 

The effects of warm mix additives on R-1 RAP with 50 and 85 gyrations are 

observed to be minimal based on Figure 5.17.  In general warm mix additives are 

observed to have very little effect on compaction of 100% RAP.  This could be due to the 
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difficulty of mixing small dosage levels of warm mix additives into the thin film of aged 

RAP bitumen already coating the RAP aggregates.   

Linear regression was performed using the data in Figures 5.13 through 5.17 

using the average Va values for each of the three total asphalt contents.  The results are 

provided in Table 5.9.  For each combination of gyrations, warm mix additive, and 

compaction temperature, the total asphalt content (PAC) that would produce 4% air voids 

in a compacted specimen was calculated from the regressions and tabulated in Table 5.9.   

In most cases the addition of warm mix additives resulted in small or no changes 

in the PAC estimates for the combination of RAP mixture and compaction parameters.  No 

consistent trends of either additive with respect to the control were apparent.  In some 

cases Evotherm™ 3G resulted in the lowest PAC, in other cases Sasobit® resulted in the 

lowest PAC, and in other cases the control treatment resulted in the lowest PAC estimate 

but the overall the differences were generally small.  The average PAC value in Table 5.9 

is recommended for use. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



www.manaraa.com

192 

 

  
     a) 116 C Compaction, No Additive         b) 138 C Compaction, No Additive 
 

  
     c) 116 C Compaction, Sasobit®          d) 138 C Compaction, Sasobit®  
 

  
     e) 116 C Compaction, Evotherm 3G™         f) 138 C Compaction, Evotherm™ 3G 

 
Figure 5.13 Effect of Compaction on R-1 RAP 
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a) Compacted at 116 C 

 
b) Compacted at 138 C 

 
c) Compacted at 154 C 

 
Figure 5.14 Results of R-1 RAP Compacted to 65 Gyrations 
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a) Compacted at 116 C 

 
b) Compacted at 138 C 

 
c) Compacted at 154 C 

 
Figure 5.15 Results of R-2 RAP Compacted to 65 Gyrations 
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a) Compacted at 116 C 

 
b) Compacted at 138 C 

 
c) Compacted at 154 C 

 
Figure 5.16 Results of R-3 RAP Compacted to 65 Gyrations 
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    a) Compacted at 116 C with 50 Gyrations     b) Compacted at 138 C with 50 Gyrations 
    

  
      c) Compacted at 116 C with 85 Gyrations   d) Compacted at 116 C with 85 Gyrations 

 
Figure 5.17 Results of R-1 RAP Compacted to 50 and 85 Gyrations 
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demand at 116 C than R-3.  The key observation is that all three RAP sources were 

affected by temperature and to different extents.  Using RAP in WMA should consider 

trends of this nature as behaviors at hot mix temperatures (e.g. 154 C) probably won’t 

translate to warm mix temperatures in a consistent fashion over a range of RAP sources. 

An extra virgin binder to temperature curve can be generated for a RAP source by 

compacting eighteen specimens (3 virgin binder contents [0.5%, 1.5%, 2.5%], three 

temperatures [116, 138, 154 C], and two replicates).  For RAP sources available in large 

quantities, this level of effort would allow much more informed decisions such as 

whether to use the material in hot mix or warm mix asphalt.  RAP sources that have high 

extra virgin binder at low temperatures would be more appealing in hot mix asphalt, and 

vice versa, all other factors being equal. 

 
 

 
 
Figure 5.18 Extra Virgin Binder for RAP as a Function of Temperature 
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Table 5.9 Regression Results From 100% RAP Compacted Testing 
 
RAP Comp    Linear Regressiona  Avg.
ID Temp (C) Ndes

 Additive n Slope Intercept R2 PAC PAC

R-1 116 50 None 18 -3.01 26.5 0.97 7.48  
   Sasobit® 15 -2.99 26.2 0.97 7.42 7.44
   Evotherm™ 3G 16 -3.00 26.3 0.99 7.43  
  65 None 15 -3.04 26.0 0.99 7.24  
   Sasobit® 16 -2.86 24.7 0.99 7.24 7.26
   Evotherm™ 3G 15 -2.88 25.0 0.99 7.29  
  85 None 15 -2.63 22.4 0.99 7.00  
   Sasobit® 15 -2.86 24.2 0.99 7.06 7.04
   Evotherm™ 3G 16 -2.77 23.6 0.99 7.08  
 138 50 None 15 -2.86 24.0 0.99 6.99  
   Sasobit® 17 -2.75 23.2 0.99 6.98 6.97
   Evotherm™ 3G 16 -2.70 22.7 0.99 6.93  
  65 None 18 -2.54 21.6 0.99 6.93  
   Sasobit® 18 -2.27 19.0 0.99 6.61 6.73
   Evotherm™ 3G 15 -2.38 19.8 0.99 6.64  
  85 None 16 -2.54 20.8 0.97 6.61  
   Sasobit® 17 -2.59 21.2 0.99 6.64 6.60
   Evotherm™ 3G 18 -2.46 20.1 0.98 6.54  
 154 65 None 6 -1.74 14.5 0.99 6.03  
   Sasobit® 6 -1.61 13.5 0.95 5.90 5.95
   Evotherm™ 3G 6 -1.67 13.9 0.99 5.93  
R-2 116 65 None 6 -1.86 16.4 0.98 6.67

6.67    Evotherm™ 3G 6 -1.77 15.8 0.95 6.67
 138 65 None 6 -1.19 11.2 0.94 6.05  
   Sasobit® 6 -1.09 10.5 0.88 5.96 6.02
   Evotherm™ 3G 6 -1.16 11.0 0.95 6.03  
 154 65 None 6 -1.59 13.8 0.98 6.16

5.94 
   Evotherm™ 3G 3 -1.40 12.0 0.99 5.71
R-3 116 65 None 6 -2.65 21.4 0.96 6.57  
   Sasobit® 3 -3.22 25.6 0.91 6.71 6.59
   Evotherm™ 3G 6 -2.28 18.8 0.95 6.49  
 138 65 None 6 -2.05 17.1 0.95 6.39  
   Sasobit® 6 -1.97 16.5 0.90 6.35 6.35
   Evotherm™ 3G 6 -1.98 16.5 0.94 6.31  
 154 65 None 6 -2.24 17.9 0.92 6.21  
   Sasobit® 3 -2.69 20.8 0.97 6.25 6.20
   Evotherm™ 3G 6 -2.07 16.7 0.92 6.14  
a)  Va = m(PAC) + b 
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5.9 Prediction of RAP Effective Asphalt 

Effective asphalt content is even more problematic than absorbed asphalt content 

because it is not a constant for a given aggregate blend.  Mix design establishes the 

effective asphalt content, which for a RAP source is more appropriately referred to as 

surface asphalt since it may not all be effective in a new mixture.  The first step in 

establishing the amount of effective asphalt contributed by the RAP is to be able to 

decouple surface and absorbed asphalt, which was demonstrated in Sections 5.6 and 5.7. 

Ideally, the second step would be to develop a method that could predict the 

amount of effective asphalt a new mixture would require knowing the aggregate blend 

and design compactive effort.  The MDOT database was used to develop regression 

equations to estimate the effective asphalt content for a given aggregate blend and design 

compactive effort.  Near perfect correlations were produced when all predictive factors 

were included, though this is not of practical usefulness since not all predictive factors 

are known for RAP.  Accurate regression equations could not be developed that utilized 

only known RAP aggregate and asphalt properties.  Coefficients of determination (R2) for 

the regression equations developed for effective asphalt with only known predictive 

factors were on the order of 0.30 to 0.35, which isn’t useful. 

As an alternative to regression equations for effective asphalt prediction, analysis 

of RAP surface asphalt was conducted in terms of confidence intervals for effective 

asphalt at each NMAS and level of compactive effort.  Population parameters for 

effective asphalt were determined from the mixture dataset that are provided in Table 

5.10.  A normal population distribution provided a good fit of the data in most cases.  In 

two cases a few data points were removed to improve the quality of the fit; these cases 
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are described in the Table 5.10 notes.  The normal distribution provided a very poor fit 

for the 50 gyration 19.0 mm NMAS data subset.  The poor fit was caused by the 

existence of two groups of data in the distribution and not by a few extreme values.  The 

mean and standard deviation of the 50 gyration 19.0 mm NMAS data subset are included 

in Table 5.10 but should be used with caution. 

 
 

Table 5.10 Effective Asphalt Population Distributions from Database 
 
   Range  Normal Distribution 
NMAS Ndes n Max Min  Fit μ σ  
9.5 mm 85 80 5.57 4.69  Good 5.110 0.1639
 65 75 5.74 4.69  Good 5.238 0.2241
 50 73 6.07 4.83  Good 5.323 0.2751
12.5 mm 85 73 5.11 4.27  Good 4.644 0.1533
 65 45 5.13 4.28  Gooda 4.696 0.1736
 50 45 5.34 4.36  Excellent 4.844 0.2482
19.0 mm 85 63 4.36 3.80  Goodb 4.092 0.1285
 65 54 4.81 3.80  Good 4.223 0.2532
 50 51 5.07 3.97  Very Poor 4.313 0.2885
a)  Four data points were removed from the MT 12.5 mm NMAS data subset to provide 

a better fit of the normal probability distribution.  The mean value for the data subset 
was reduced from 4.725 to 4.696 and the standard deviation was reduced from 
0.2512 to 0.1736 by this action. 

b)  Five data points were removed from the HT 19.0 mm NMAS data subset to provide 
a better fit of the normal probability distribution.  The mean value for the data subset 
was reduced from 4.132 to 4.092 and the standard deviation was reduced from 
0.2013 to 0.1285 by this action. 

 
 
 

A statistical approach was developed with Table 5.10 as the basis to estimate the 

amount of RAP surface asphalt that is effective under particular conditions.  This 

approach does not provide a precise estimate of RAP effective asphalt content but it does 

bound the upper and lower limits of the solution; Figure 5.19 illustrates the approach.  

For particular combinations of NMAS and level of design compactive effort, the 
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populations of effective asphalt for new mixtures from the MDOT database were 

assigned normal probability distributions.  With the normal population distribution 

parameters of mean and standard deviation, a 95% confidence interval (C.I.) was 

constructed for the distribution of effective asphalt contents (Figure 5.19).  The upper and 

lower limits of the confidence interval represent the expected maximum and minimum 

effective asphalt content possible for a new mixture of a particular type. 

 
 
 

 
 
Figure 5.19 Estimation of Pbe(R) Range 
 
 
 

The total amount of surface asphalt in the RAP is defined by Eq. 5.3, where all 

terms are defined in Figure 5.2.  For a given aggregate structure and design compactive 

effort the amount of effective asphalt can be bounded using Eq. 5.4 using inputs from 

Table 5.10.  The assumption is made that the grade of virgin binder does not appreciably 

affect compaction characteristics of the aggregate blend; this assumption may not be 
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without consequence but it is routinely made in current practice (e.g. substituting PG 76-

22 for PG 67-22 for the same aggregate blend and compactive effort without changing 

the asphalt content).  This assumption allows one to take the distribution of effective 

asphalt in the database and use the information to make qualitative assessments of RAP 

surface binder characteristics. 

        ( ) ( ) ( )ACbs R ba R be VP P P P= − −
 (Eq 5.3) 

   ( )min,max 1.96beP μ σ= ±  (Eq 5.4) 

The amount of effective asphalt in the RAP can be bounded by utilizing Eq. 5.4 

and knowing the amount of effective virgin binder added to the RAP source to achieve 

adequate compaction; the result is Eq. 5.5.  By having an estimate of the total RAP 

surface asphalt from Eq. 5.3 and the boundaries of the effective RAP surface asphalt from 

Eq. 5.5, the amount of ineffective RAP surface asphalt can also be bounded as shown in 

Eq. 5.6. 

( ) ( ) ( )min,max 1.96be R be VP Pμ σ= ± −    (Eq 5.5) 

( ) ( ) ( )min,max min,maxbi R bs R be RP P P= −  (Eq 5.6) 

Prior to using these equations it should be understood that minimum values can be 

calculated to be negative and those cases should be interpreted as zero.  Negative values 

can occur because distributions are part of the calculations.  An example of a condition 

that would lead to a negative value is a RAP source with a relatively high total asphalt 

content where nearly all of the surface asphalt is effective. 
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5.10 Evaluation of RAP Effective Asphalt Prediction 

Estimates of Pba(R) determined in Table 5.8 with average Gse values and zα/2 of 

zero, effective asphalt population parameters from Table 5.10,  and average estimated 

PAC values determined in Table 5.9 were used to calculate ranges of Pbe(R) and Pbi(R).  

Results are given in Table 5.11 for each combination of RAP source, compaction 

temperature, and compactive effort.  The Pbs(R) values given in Table 5.11 for each RAP 

source increase slightly as Pbe(V) decreases because all terms are defined on a mixture 

mass basis; the mass of RAP surface asphalt does not change.  The Table 5.11 data shows 

that some of the RAP surface asphalt is very likely ineffective in some conditions and 

that the behavior is condition dependent. 

 
 

Table 5.11 Summary of RAP Effective Asphalt Calculations 
 
RAP Compaction     Range of Pbe (R) Range of Pbi (R)

ID Temp (C) Ndes
 PAC Pbe(V) Pbs(R) Min Max Min  Max

R-1 116 50 7.44 2.05 4.76 2.73 3.81 0.95 2.03
  65 7.26 1.86 4.77 2.94 3.82 0.95 1.83
  85 7.04 1.63 4.78 3.16 3.80 0.98 1.62
 138 50 6.97 1.56 4.78 3.22 4.30 0.48 1.56
  65 6.73 1.30 4.80 3.50 4.38 0.42 1.30
  85 6.60 1.16 4.81 3.63 4.27 0.54 1.18
 154 65 5.95 0.48 4.83 4.32 5.20 0.00 0.51
R-2 116 65 6.67 1.13 4.97 3.67 4.55 0.42 1.30
 138 65 6.02 0.44 5.00 4.36 5.24 0.00 0.64
 154 65 5.94 0.36 5.00 4.44 5.32 0.00 0.56
R-3 116 65 6.59 1.67 4.36 2.69 3.37 0.99 1.67
 138 65 6.35 1.42 4.37 2.94 3.62 0.75 1.43
 154 65 6.20 1.26 4.38 3.10 3.78 0.60 1.28
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It should be understood that the maximum and minimum values of Pbe(R) and Pbi(R) 

given in Table 5.11 estimate the range of possible values with a 95% level of confidence 

but that there is a fairly high probability that the actual value is near the middle of the 

range.  For example, R-1 at 116 C and 50 gyrations has a range of 2.73 to 3.81% for Pbe(R) 

but the actual value is fairly likely to be between 3.0 and 3.5%.  Likewise the range of 

Pbe(R) is 0.95 to 2.03 but the actual value is fairly likely to be between 1.2 and 1.8%.  For 

a particular level of compactive effort both the minimum and maximum estimates of 

Pbe(R) increase as the compaction temperature is increased indicating that a greater 

proportion of RAP asphalt is contributing to compaction as the temperature increases. 

R-1 had a considerable amount of ineffective surface asphalt at 116 C, though no 

ineffective asphalt could be detected at 154 C.  R-2 had a moderate amount of ineffective 

asphalt at 116 C, though no ineffective asphalt could be detected at 138 or 154 C.  R-3 

showed ineffective surface asphalt at all temperatures, which was somewhat surprising 

relative to R-1 and R-2.  R-3 had the lowest RAP asphalt content and its binder properties 

were intermediate compared to R-1 and R-3.  A likely cause of the differing behavior for 

R-3 is that it is a multiple source sample so the Table 5.10 12.5 mm NMAS population 

parameters may not be applicable as the material could be a combination of different 

mixtures which would affect the effective asphalt content.  Additionally, the gradation of 

a multiple source sample wouldn’t necessarily be representative, which is evidenced by 

the gradation of R-3 (e.g. sand ratio of 71). 

The analysis presented in this section has shown the database approach to 

evaluating RAP surface asphalt has some appealing characteristics, but that it also has 

some limitations.  Estimates of this nature are valuable for determining the best use of 
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any given RAP source.  They also provide estimates of effective RAP asphalt that 

haven’t been available in literature.  Limitations are described in the following paragraph. 

The approach appears to work reasonably well for single source RAP samples 

(i.e. R-1 and R-2) in terms of the ability to estimate the amount of effective and 

ineffective surface asphalt and to characterize the effect of temperature on the RAP 

surface asphalt.  Based on the data available, the effectiveness of the approach to estimate 

effective and ineffective surface asphalt for a multiple source RAP sample (i.e. R-3) is 

questionable, though the approach was able to capture the effect of temperature on the 

multiple source sample.  At present, it is not recommended to use the effective asphalt 

estimation approach in this section unless the RAP sample was obtained from a single 

source.  Another limitation to the database approach is that gradation changes due to 

milling are not represented in a direct manner.  The fines content of RAP exceeds that of 

new mixtures (Figure 5.5a and 5.6c).  Gradation changes prevent the Table 5.10 

distributions from fully representing the distribution of RAP properties. 

 
 

5.11 Performance Results for 100% RAP Mixtures 

This section presents 100% RAP mixture performance test results.  Properties of 

the mixtures were given in Table 3.5.  The raw data is found in Doyle and Howard 

(2010b).  The data in this section is used to provide a perspective of RAP only mix 

properties relative to high RAP mixes, not for considering 100% RAP use in service. 

Relative effects of different heating times were investigated with 9.5-100/RM-1 as 

discussed in Section 4.3.1.1.  The data is summarized in Figure 5.20.  For specimens 

compacted with same compactive effort, air voids and mass loss follow the same trend.  
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For specimens compacted to target air voids, mass loss does not vary much except to 

increase for the longest aging time of 1440 minutes; however it was not possible to fully 

compact those specimens to the target air voids.  Results appear to indicate the very high 

asphalt stiffness of the RAP overwhelms any moderate increase in virgin binder stiffness 

due to short term laboratory conditioning. 

 
 
 

      
   a)  Specimens Compacted to Ndes b)  Specimens Compacted to Target Va 

 
Figure 5.20 Results for 9.5-100/RM-1 Mixture Relative Heating Experiment 

 
 
 
Cantabro testing was performed on SGC compacted specimens as described in 

Section 4.2.4 for designed 100% RAP mixes (Table 5.12).  R-3 had the highest ML 

followed by R-1 and then by R-2.  ML for the designed 100% RAP mixtures was 

noticeably higher than the 4 to 7% loss observed by Celauro et al. (2010) for 0% RAP. 

 
 

Table 5.12 Cantabro Results for 100% RAP Mixtures 
 
Mixture ID n Avg. Air Voids (%) Avg. ML (%) 
9.5-100/RM-1 3 4.6 31.8 
9.5-100/RM-2 3 4.1 17.0 
12.5-100/RM-3 3 4.6 33.7 
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BBR testing of the three designed 100% RAP mixes was performed at four test 

temperatures, test results are presented in Figure 5.21.  The isotherms are generally rather 

flat which indicates potentially poor relaxation properties compared to mixes with softer 

binder.  Somewhat surprisingly, stiffness of the different RAP sources at these 

temperatures is not as different as might be expected given their variation in total asphalt 

content and observed differences in compaction behavior.  At -24 C and -18 C 

temperatures the mixture with R-1 RAP is slightly stiffer than the mixture with R-2 RAP; 

stiffness of the mixture with the R-3 RAP source was variable at these test temperatures.  

At -12 C and -06 C test temperatures the opposite trend is observed with the R-1 and R-2 

RAP sources (i.e. R-2 was stiffer than R-1); the R-3 RAP mixture had similar stiffness to 

the R-1 mixture at these test temperatures. 
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       a)  -24 C Test Temperature   b)  -18 C Test Temperature 
 

  
      c)  -12 C Test Temperature   d)  -06 C Test Temperature 

 
Figure 5.21 BBR Data for 100% RAP Mixtures 

 
 
 
Tensile strength properties of 100% RAP mixtures at low and moderate 

temperatures were determined according to Section 4.2.2.  Results are presented in Table 

5.13.  R-2 RAP source is much stronger than R-1 RAP source at low temperatures. 

 
 

Table 5.13 IDT Results for 100% RAP Mixtures 
 
 Test Temperature and Average Tensile Strength (kPa) 
Mixture ID -06 C -12 C -18 C -24 C +25 C 
9.5-100/RM-1 2430 1808 1549 1952 2751 
9.5-100/RM-2 3597 4660 2874 3476 2990 
Note:  Each value is average of two test results. 
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Rutting resistance of 100% RAP was evaluated by APA and PURWheel dry 

protocol testing.  APA rut testing was performed on SGC compacted specimens as 

described in Section 4.2.6 at nominal air void levels of 7 and 10%; Table 5.14 

summarizes the results.  In all cases total rutting was very low; less than 1.5 mm for 7% 

air voids and less than 2.5 mm for 10% air voids. 

PURWheel dry protocol rut testing was performed on LAC compacted specimens 

of designed 100% RAP mixtures as described in Section 4.2.7; raw data is located in 

Tables A.1, A.3 and A.5.  The data is summarized in Table 5.15.  PURWheel dry 

protocol average total rut depths for 100% RAP mixtures were generally low.  For 

mixtures 9.5-100/RM-1 and 12.5-100/RM-3 the average total rut depths were the same, 

about 4.5 mm.  Mixture 9.5-100/RM-2 exhibited an average total rut depth of about 6.5 

mm, which is slightly higher than results for the other 100% RAP mixtures.  Both APA 

and PURWheel test results indicate that 100% RAP mixes with virgin binder are rut 

resistant but they do rut a measurable amount. 

 
 

Table 5.14 APA Results for 100% RAP Mixtures 
 
Mixture Avg. Rut Depth (mm) Linear Rutting Ratea Power Lawb

ID Va (%) 2000 8000 Slope (10-6) Intercept R2 a b R2

9.5-100/RM-1 6.7 0.8 1.1 57 0.69 0.98 0.082 0.293 0.95
 9.6 1.2 2.0 128 0.96 0.99 0.059 0.389 0.98
9.5-100/RM-2 7.1 0.8 1.2 132 0.75 0.98 0.029 0.458 0.99
 10.1 1.2 2.3 184 0.85 0.99 0.025 0.504 0.99
12.5-100/RM-3 7.0 1.0 1.5 89 0.81 0.98 0.065 0.351 0.97
 9.8 0.8 1.5 100 0.68 0.99 0.047 0.381 0.99
a)  Linear rutting rate regression analysis is based on averaged data between 2000 and 

8000 cycles. 
b)  Power law regression analysis is based on averaged data and Eq. 2.4. 

 
 

 



www.manaraa.com

210 

Table 5.15 PURWheel Dry Protocol Test Results for 100% RAP Mixtures 
 
   Rut Depth Linear Rutting Rateb Power Lawc

Mixture ID Va (%)a Rep Pass mm Slope (10-4) Intercept R2 a b R2

9.5-100/RM-1 9.5 1-L 20 k 4.4 100 1.91 0.98 0.102 0.380 0.98
  1-R 20 k 5.0 100 2.31 0.97 0.173 0.334 0.86
 9.8 2-L 20 k 3.3 90 1.55 0.97 0.087 0.367 0.99
  2-R 20 k 5.3 200 2.42 0.98 0.134 0.371 0.99
Average 9.7 --- 20 k 4.5 123 2.05 --- 0.124 0.363 ---
9.5-100/RM-2 10.0 1-L 20 k 8.7 300 2.84 0.98 0.073 0.475 0.95
  1-R 20 k 7.1 200 2.84 0.96 0.052 0.494 0.92
 9.6 2-L 20 k 5.2 200 1.79 0.97 0.039 0.500 0.96
  2-R 20 k 5.4 200 1.85 0.97 0.031 0.524 0.96
Average 9.8 --- 20 k 6.6 225 2.33 --- 0.049 0.498 ---
12.5-100/RM-3 9.5 1-L 20 k 4.1 100 1.84 0.97 0.099 0.376 0.91
  1-R 20 k 5.7 200 2.78 0.95 0.091 0.423 0.92
 11.2 2-L 20 k 3.4 100 1.40 0.97 0.029 0.490 0.88
  2-R 20 k 5.3 200 1.73 0.97 0.029 0.527 0.96
Average 10.4 --- 20 k 4.6 150 1.94 --- 0.062 0.454 ---

a)  Specimen air voids correlated to AASHTO T 331. 
b)  Linear rutting rate regression analysis is based on averaged data between 2000 and 

20000 passes. 
c)  Power law regression analysis is based on averaged data and Eq. 2.4. 

 
 
 
 
 
Moisture damage resistance of 100% RAP was evaluated by TSR and PURWheel 

wet protocol testing.  For designed 100% RAP mixtures (9.5-100/RM-1, 9.5-100/RM-2, 

and 9.5-100/RM-3) TSR moisture susceptibility testing was performed on SGC 

compacted specimens as described in Section 4.2.5.  The results are summarized in Table 

5.16.  The R-1 RAP source had an acceptable TSR value (i.e. >80%), while the R-2 and 

R-3 RAP sources did not.  Air voids for mixture 9.5-100/RM-2 were higher than specified 

by the test method, but the mixture was not re-tested. 

PURWheel wet protocol testing was performed as described in Section 4.2.7 for 

all designed 100% RAP mixtures; raw data is located in Tables A.2, A.4 and A.6.  Figure 
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5.22 presents results of wet and dry protocol PURWheel tests for mixture with R-1; three 

of the four wet test specimens exhibited evidence of moisture damage in the data and 

early test termination.  The wet test specimen that did not terminate early exhibited a 

higher rate of rutting than dry test specimens. 

 
 

Table 5.16 TSR Results for 100% RAP Mixtures 
 
Mixture Conditioned Set  Un-Conditioned Set  
ID Avg. Va (%) Sat (%) St (kPa)  Avg. Va (%) St (kPa) TSR (%) 
9.5-100/RM-1 6.4 68 2008  6.5 2229 90 
9.5-100/RM-2 8.4a 62 1680  8.4 2603 65 
12.5-100/RM-3 7.4 62 1383  7.5 1959 71 
a)  Air voids slightly high but not re-tested. 

 
 
 
Figure 5.23 presents results of wet and dry protocol PURWheel testing for 

mixture with R-2; only one of the four wet test specimens exhibited evidence of moisture 

damage and premature test termination.  The other wet test specimens did exhibit 

somewhat higher rates of rutting than did the dry test specimens.  Figure 5.24 presents 

wet and dry protocol PURWheel test results of mixture with R-3.  Overall three of the 

four wet test specimens exhibited moisture damage and early test termination.  The two 

replicates with the worst performance came from the same LAC compacted slab.  

Table 5.17 summarizes PURWheel wet protocol results for designed 100% RAP 

mixes.  The LAC compacted replicate slab specimen seen in Figure 5.24 that performed 

poorly had higher air voids than its companion slab.  Examination of the results for 

mixture 9.5-100/RM-1 in Table 5.17 and Figure 5.22 reveals that the LAC slab in that test 

set with higher air voids outperformed the companion slab with lower voids.  The results 

bring into question the impact of air voids in evaluating performance of LAC slab 
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specimens in the PURWheel wet protocol test.  Several tests of one mixture with varying 

air voids is needed before specific statements could be made.  Interestingly, results of 

TSR testing on designed 100% RAP mixtures do not agree with PURWheel wet protocol 

test results for the same mixture. 

 
 

 
 
Figure 5.22 PURWheel Test Results for Mixture 9.5-100/RM-1 

 
 
 

 
 
Figure 5.23 PURWheel Test Results for Mixture 9.5-100/RM-2 
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Figure 5.24 PURWheel Test Results for Mixture 12.5-100/RM-3 

 
 
 

Table 5.17 Summary of PURWheel Wet Test Results for 100% RAP Mixtures 
 
    Termination  Visual Assessment 
Mixture ID Va (%)a Rep SIP Pass (mm) Bare Agg. Loose Agg. Crack 
9.5-100/RM-1 9.8 1-L 8,500 10,620 23.5 Yes Yes Yes 
  1-R 8,000 12,314 21.8 Yes Yes Yes 
 11.3 2-L 14,000 17,312 26.1 Yes Yes Yes 
  2-R None 20 k 10.3 Yes No Yes 
Average 10.6 --- 12,625 15,062 20.4 --- --- --- 
9.5-100/RM-2 8.8 1-L None 20 k 8.8 Yes No No 
  1-R None 16,412 11.7 Yes No No 
 10.6 2-L None 20 k 13.3 Yes No No 
  2-R 8,000 11,490 19.8 Yes Yes Yes 
Average 9.7 --- 17,000 16,976 13.4 --- --- --- 
12.5-100/RM-3 8.7 1-L 16,000 18,130 16.2 Yes Yes No 
  1-R None 20,000 6.2 Yes No No 
 11.5 2-L 3,000 3,800 29.5 Yes Yes Yes 
  2-R 4,000 4,174 18.1 Yes Yes Yes 
Average 10.1 --- 10,750 11,526 17.5 --- --- --- 
Note:  When no SIP was observed, a value of 20,000 passes was used to calculate the 

average SIP. 
a)  Specimen air voids correlated to AASHTO T 331. 
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5.12 Summary of RAP Characterization 

Test data was presented in this chapter that provided means to characterize RAP 

in the context of its temperature dependency.  Testing eighteen compacted 100% RAP 

specimens using the method presented could provide the effect temperature has on virgin 

binder demand.  Test data also showed that RAP does not absorb additional virgin binder 

and that measurement of Gse on RAP coated with virgin binder is an effective approach. 

Use of conventionally measured Gsb values for extracted RAP aggregate to 

calculate absorbed RAP asphalt was shown to yield values that were almost certainly 

incorrect for the RAP sources evaluated.  An approach was developed to estimate Pba(R) 

of Mississippi RAP sources that does not require measurement of Gsb on extracted RAP 

aggregate.  The approach cannot pick exact values but does result in estimates of Pba(R) 

believed to be more reasonable than current practice in certain situations.  Use of a large 

data set encompassing all agency activities for a period of more than five years makes 

this approach unique.  The methodology should be easily implementable by any state 

DOT or governing entity since the effort to sort the historical data and use it to develop 

regression equations is reasonable and this chapter can be used as a guide. 

The relative effectiveness of RAP surface asphalt was evaluated for a variety of 

compaction conditions.  The approach coupled distributions of effective asphalt contents 

Mississippi determined from recent historical practice with compaction of RAP and 

added virgin binder.  Effective binder replacement is believed to be a better way to view 

RAP than total binder replacement and the approach utilized herein allowed for 

estimation of amounts of effective binder for RAP to be made at varying compaction 
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conditions.  The estimates of effective RAP binder are not without flaws but appear to be 

a reasonable technique to address a major problem with the use of high RAP quantities. 

Performance testing of 100% RAP mixes provides a baseline for comparison to 

control and high RAP WMA mixes in later chapters.  The data highlights differences 

between RAP sources.  For example, current practice would treat R-1 and R-2 RAP 

sources nearly the same (nearly same asphalt content, same NMAS and comparable 

gradations), yet their performance is notably different especially durability and moisture 

susceptibility. 
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CHAPTER 6 
 

AIRFIELD SURFACE MIXTURES 
 
 

6.1 Overview of Airfield Surface Mixtures 

This chapter presents test results for airfield surface mixtures.  Mixture properties 

were provided in Section 3.5.2.  The experimental design was discussed in Section 4.3.2. 

 
 

6.2 Recovered Binder Properties 

Table 6.1 provides asphalt content and PG pass/fail temperatures of recovered 

binder for mixtures 12.5-0/AM-1 to 12.5-50/AM-12.  Binder properties were only 

evaluated for the limestone aggregate (lowest absorption) mixes since the same RAP was 

used for all mixes and the effects of virgin aggregate type were assumed to be minor.  

Testing on recovered asphalt was performed assuming the recovered asphalt was already 

aged and hence there was no need to test after running the RTFO or the PAV tests. 

Going from 0% RAP to 25% RAP shows that the high temperature property 

increased by approximately 8 degrees.  This increase in RAP only changed the low 

temperature properties by approximately 3 degrees.  Going from 0% RAP to 50% RAP 

changed the high temperature properties by approximately 20 degrees whereas it only 

changed the low temperature properties by approximately 8 degrees.  Hence, adding RAP 

favorably affects the high temperature properties (provides more rut resistance) much 

more than it adversely affects the low temperature properties (provides less resistance to 
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thermal cracking).  Potentially the aged binder may have reduced the temperature 

susceptibility resulting in an increase in PG grade at high temperatures and less change at 

low temperatures; however specific conclusions cannot be made with the available data 

and further research would be needed to investigate this issue. 

 
 

Table 6.1 Extraction and Recovered Asphalt Data for Mixtures 12.5-0/AM-1 to 12.5-
50/AM-12 

 
RAP 

Mixture ID 
Total Asphalt 
Content  ( % ) 

Pass / Fail Temperature ( C ) 
( % ) High  Intermediate Low 
0 12.5-0/AM-1 4.7 73.0 19.3 -27.5 
 12.5-0/AM-2 4.8 70.3 20.7 -27.0 
 12.5-0/AM-3 4.7 66.0 16.4 -30.1 
 12.5-0/AM-4 5.2 68.8 18.3 -27.7 
 Range of Temperatures ( C ) 7.0 4.3 3.1 
25 12.5-25/AM-5 5.1 80.5 23.3 -24.9 
 12.5-25/AM-6 5.2 78.0 24.7 -23.7 
 12.5-25/AM-7 5.0 73.4 17.9 -28.2 
 12.5-25/AM-8 5.2 78.8 24.0 -25.4 
 Range of Temperatures ( C ) 7.1 6.8 4.5 
50 12.5-50/AM-9 Not Available 85.8 28.7 -21.9 
 12.5-50/AM-10 5.7 88.2 29.1 -22.0 
 12.5-50/AM-11 6.1 96.0 31.5 -14.3 
 12.5-50/AM-12 5.7 88.2 29.2 -20.7 
 Range of Temperatures ( C ) 10.2 2.8 7.7 
Note:  The high pass / fail temperature was determined based on a 2.20 kPa min 
criteria. 
 
 
 

WMA mixes with 0% and 25% RAP have decreased high temperature properties 

relative to the HMA mixes with 0% and 25% RAP; among the WMA mixes the 

Evotherm™ mixes (mixes AM-3 and AM-7) have values approximately 4 degrees lower 

than the Sasobit® or foamed WMA mixes.  Surprisingly the exact opposite trend is seen 

with 50% RAP mixes; the WMA mixes have increased high temperature properties 

relative to the HMA mixes and the Evotherm™ mix (mix AM-11) has a value 
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approximately 4 degrees higher than the Sasobit® and foamed WMA mixes.  The trend 

observed for the 0 and 25% RAP mixes is likely due to reduced binder aging at lower 

mix aging temperature; however that does not explain the 50% RAP properties.  The 

more dramatic changes in asphalt properties of the Evotherm™ 3G mixes relative to 

other WMA mixes seen with 0 and 25% RAP could potentially be explained by the 

chemistry of the Evotherm™ 3G additive itself which may have a softening effect on the 

asphalt but no specific conclusions can be drawn with the available data. 

In general the spread of values of high temperature properties for a given amount 

of RAP is seven degrees or more and would seem to be adequate to reasonably predict 

the best and worst performing mixes for a given gradation and RAP content.  For 0 and 

25% RAP, binder data predicts that HMA should rut the least and Evotherm™ 3G the 

most; for 50% RAP Evotherm™ 3G is predicted to rut the least and HMA the most. 

Low temperature binder property values for 0, 25, and 50% RAP WMA mixes 

with Sasobit® and foam are within about 1 degree of the 0, 25, and 50% RAP HMA 

mixes which indicates that the Sasobit® and foam had only a slight effect on low 

temperature properties for a given amount of RAP in the mix.  The Evotherm™ 3G 

WMA mixes with 0 and 25% RAP reduced the low temperature property by 

approximately 3 degrees relative to the 0 and 25% RAP HMA mixes indicating that the 

low temperature properties are possibly improved relative to the HMA.  For the 50% 

RAP mixes the exact opposite trend is observed for the Evotherm™ 3G mix; the low 

temperature property of the Evotherm™ 3G mixes is almost 8 degrees higher than the 

HMA mix indicating that low temperature properties may be adversely affected. 
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The unusual results for WMA mixes with 50% RAP, especially the Evotherm™ 

3G mix, are thought to be at least partly due to difficulty in fully extracting the asphalt 

from these mixes. Note in Table 3.10 that all of the asphalt was extracted for the 

Evotherm™ 3G mix but that not all of the asphalt was successfully extracted for 

Sasobit® and foam WMA mixes (5.7% asphalt extracted for mixes AM-10 and AM-12 

and their design total asphalt contents are 6.1%).  The asphalt that could not be extracted 

is most likely aged asphalt from the RAP; if all of the RAP asphalt had been extracted for 

the Sasobit® and foam mixes their stiffness would likely be increased.  Furthermore, the 

effects of the solvent extraction and recovery process cannot be fully quantified and may 

also have contributed to the unusual results observed. 

 
 

6.3 Cantabro Durability Data 

Results of durability testing for the twenty-four airfield mixes are presented in 

Figure 6.1.  Cantabro testing was performed according to Section 4.2.4.  The effect of 

RAP addition to the mixes is apparent; the mass loss is increased (i.e. durability is 

decreased) as additional RAP is incorporated into the mixes.  No statistically significant 

differences were found between the hot mix control and the three warm mix technologies 

or between the warm mix technologies for any of the six gradations.  The effect of RAP 

on mass loss was found to be statistically significant. 
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a)  Durability Data for Limestone Mixes (AM-1 to AM-12) 

 

 
b)  Durability Data for Crushed Gravel Mixes (AM-13 to AM-24) 

 
Figure 6.1 Airfield Surface Mixture Durability Results 

 
 
 
To better interpret the effects of RAP on durability, statistical comparisons were 

made using the Tukey multiple comparison procedure; the results are summarized in 

Table 6.2.  Gradations with the same Tukey letter grouping are not significantly different 
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from each other; all gradations in a letter grouping are significantly different than those in 

other letter groupings.  For limestone 0% RAP (LS-1), 25% RAP (LS-2, and 50% RAP 

(LS-3) gradations are all three significantly different from one another.  The same trend 

held true for the gravel gradations.  The limestone and gravel 0% RAP gradations (LS-1 

and GR-1) were significantly different from one another; this implies that in the absence 

of RAP, virgin aggregate type has a significant effect on durability results.  However the 

limestone and gravel 25% RAP gradations (LS-2 and GR-2) were not significantly 

different from one another.  The limestone and gravel 50% RAP gradations (LS-3 and 

GR-3) were also not significantly different from one another.  Based on the data, the 

presence of 25% and 50% RAP in the mixture appears to overwhelm effects due to virgin 

aggregate type.  As the gradations are all quite similar, it is likely that the contribution of 

RAP asphalt to the recycled mixes is the dominating factor leading to this result. 

To investigate durability test sensitivity to asphalt content changes, testing was 

performed on specimens from the mix design process with a variety of trial asphalt 

contents (Figure 6.2).  The x-axis (AC ratio) is the asphalt content of the specimen 

divided by the design asphalt content for the mixture.  The y-axis (ML ratio) is the mass 

loss result of the specimen divided by the average mass loss of the mix at the design 

asphalt content.  No discernable differences are seen between gradations or virgin 

aggregate types.  For asphalt contents higher than the design, durability resistance is not 

adversely affected.  However at asphalt contents lower than design, the durability 

resistance of the mixes begins to decrease noticeably.  While this test has not been proven 

to be related to durability, it is believed that it is a good test for ranking the mixtures. 
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Table 6.2 Tukey Multiple Comparison Test of Mass Loss for Airfield Mixtures 
 

Gradation Number Mean Mass Loss (%) Tukey Grouping 
LS-1 5.8 A    
LS-2 11.6   C  
LS-3 16.7    D 
GR-1 9.4  B   
GR-2 13.5   C  
GR-3 17.7    D 
Note:  Experimental treatments with the same letter grouping are not statistically 

significantly different at the 5% significance level. 
 
 
 

 
 

Figure 6.2 Relationship of Durability Results to Design Asphalt Content 
 

 
 

6.4 BBR Data 

BBR mixture beam testing was performed as described in Section 4.2.3.  Figures 

6.3 and 6.4 present mixture stiffness results at 60 seconds when tested at -6 C and -12 C 

respectively.  Statistically, no significant differences were found between the hot mix 

control and the three warm mix technologies or between the warm mix technologies for 

any of the six gradations at either test temperature.  However when RAP was included as 
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technologies were less stiff than the hot mix.  This is likely due to the decreased amount 

of aging of the binder when mixing using the WMA temperatures. 

The effect of RAP on low temperature stiffness values was found to be 

statistically significant.  To better interpret the data two Tukey multiple comparison tests 

were performed, one for each test temperature; all the results are given in Table 6.3.  For 

a specific temperature, gradations with the same Tukey letter grouping are not 

significantly different from each other; all gradations in a letter grouping are significantly 

different from those in other letter groupings.  For both test temperatures the two 0% 

RAP gradations are not significantly different indicating that in the absence of RAP, 

virgin aggregate type did not appear to affect mixture stiffness.  When RAP is included in 

the mixtures, the results are chained together and no specific conclusions can be drawn; 

the only significant differences (at either test temperature) are between LS-2 and GR-3.  

Based on the results, the increase in mixture stiffness from 0% to 25% RAP is generally 

significant however the subsequent increase in stiffness from 25% to 50% RAP is 

generally not significant or as large.  This is in contrast to the results reported by Li et al. 

(2008) who found little difference between 0% and 20% RAP mixtures but a large 

reduction in low temperature fracture resistance for 40% RAP mixtures. 
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a)  Limestone Mixes (AM-1 to AM-12) 

 

 
b)  Crushed Gravel Mixes (AM-13 to AM-24) 

 
Figure 6.3 Airfield Surface Mixture Stiffness at 60 sec Tested at -6 C 
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a)  Limestone Mixes (AM-1 to AM-12) 

 

 
b)  Crushed Gravel Mixes (AM-13 to AM-24) 

 
Figure 6.4 Airfield Surface Mixture Stiffness at 60 sec Tested at -12 C 
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Table 6.3 Tukey Multiple Comparison Test of Airfield Mixture Stiffness at 60 sec 
 

Test Temperature Gradation Number Mean Stiffness (GPa) Tukey Grouping 
-6 C LS-1 6.6 A   
 LS-2 11.6  B C 
 LS-3 13.1   C 
 GR-1 7.5 A   
 GR-2 10.7  B  
 GR-3 11.4  B C 
-12 C LS-1 11.6 D   
 LS-2 15.2  E F 
 LS-3 17.5   F 
 GR-1 11.2 D   
 GR-2 12.8 D E  
 GR-3 15.2  E F 
Note:  Experimental treatments with the same letter grouping are not statistically 

significantly different at the 5% significance level. 
 
 
 

For the limestone mixtures, correlations between mixture stiffness and low 

temperature binder grade (from Table 6.1) were generally poor as shown in Figure 6.5a 

although the -6 C test data was slightly better than the -12 C test data.  Correlations 

between mixture stiffness and binder stiffness at -12 C test temperature were also 

generally poor (Figure 6.5b).  This result is aligned with the evidence presented by Huang 

et al. (2005) for limited mechanical blending of RAP asphalt and virgin binder. 

In addition, the Table 6.1 binder data seems to indicate that the 50% RAP 

Evotherm™ 3G mixes would be much stiffer than the other 50% RAP mixes; this is not 

the case for the mixture data presented in Figures 6.3 and 6.4.  These poor correlations of 

mixture properties and binder properties provide evidence of the problems that can be 

associated with using only binder data to study mixtures with high RAP contents. 
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a)  Correlation of Mixture Stiffness to PG Low Temperature Grade 

 

 
b)  Correlation of Mixture Stiffness to Binder Stiffness (-12 C Data) 

 
Figure 6.5 Correlations of Low Temperature Mixture Stiffness 

 
 
 

6.5 Rutting Data 

Figure 6.6 provides rut depth test results for all twenty-four mixtures.   An 8 mm 
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rutted less than 8 mm, indicating they should have adequate rutting resistance.  All gravel 

mixes with exception of the 0% RAP foam rutted less than 8 mm; the foam specimen 

rutted 8.8 mm which does not greatly exceed the pass/fail criteria.  One possible 

explanation for the rutting behavior of the 0% RAP foamed gravel is the design effective 
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asphalt content is 0.3% higher than the other two 0% RAP WMA mixes.  Overall, no 

rutting problems were observed for the high RAP with WMA. 

 
 
 

 
a)  Rutting Data for Limestone Mixes (AM-1 to AM-12) 

 

 
b)  Rutting Data for Crushed Gravel Mixes (AM-13 to AM-24) 

 
Figure 6.6 Airfield Surface Mixture APA Rutting Test Results 
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PG 76-22 (modified with radial SBS polymer) binder was used in place of PG 67-

22 binder for mixtures AM-1 and AM-13 (0% RAP HMA controls) to provide a reference 

for comparison to the effects from inclusion of RAP.  A 0% RAP aggregate with a 

polymer modified binder is considered a premium mixture that would be relatively 

expensive and is a good reference to compare with other mixtures.  The primary purpose 

of using polymer modified binder is for rutting resistance.  This reference using a mixture 

with modified asphalt is provided in Figure 6.6 with a horizontal line. 

The data generally showed that the mixtures being evaluated had higher rutting 

than the modified asphalt mixture used for comparison.  However, at 50% RAP, the 

amount of rutting with the mixtures is approximately equal to that for the control 

modified asphalt mixture.  Generally there is less rutting as the amount of RAP increased.  

There is no mix type that clearly has a higher degree of rutting.  In some cases the HMA 

ruts more and in other cases one of the WMA mixes has more rutting. 

The binder data provided in Table 6.1 was used to determine if a correlation 

existed with limestone specimen rut data.  Binder data suggests that HMA and Sasobit® 

mixtures should rut less with 0% RAP than Evotherm™ 3G and foam, which they did.  

Figure 6.7 plots the PG high temperature grade of mixes from Table 6.1 versus total rut 

depth.  This correlation clearly shows that the resulting recovered binder grade had a 

reasonably high correlation (R2 = 0.73) with the amount of rutting in the APA. 
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Figure 6.7 Correlation of PG High Temperature Grade to Rut Depth 
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temperature binder property was be able to discern general rutting trends as the amount of 

RAP is increased it was a relatively poor predictor of specific best or worst performing 

mixes for a given level of RAP.  This is evidence of the problems that can be associated 

with using only binder data to study mixtures with high RAP contents. 
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value and higher tensile strengths, although not substantially in some cases.  Inclusion of 

25% RAP improved the moisture resistance compared to 0% RAP for six of the eight 

cases.  Inclusion of 50% RAP improved the moisture resistance compared to 0% RAP in 

seven of the eight cases (the gravel with Evotherm™ 3G decreased slightly but TSR was 

still above 0.80).  The increased tensile strength results align with the results of Li et al. 

(2008); however the generally increased TSR values do not. 

For 0% RAP mixes the gravel aggregate generally performed better than the 

limestone aggregate with exception of the foamed gravel mix.  For 25% RAP mixes the 

limestone aggregate performed much better than the gravel aggregate; all the 25% RAP 

WMA mixes with gravel aggregate performed poorly.  Mixes with 50% RAP all 

performed acceptably (TSR > 0.80 was considered acceptable) except for the foamed 

gravel mix. 

The HMA mixes and the Sasobit® WMA mixes both generally performed well; 

five of the six HMA mixes performed acceptably as did five of the six Sasobit® mixes.  

Four of the six Evotherm™ mixes performed acceptably.  The foamed asphalt mixtures 

often had lower TSR values, especially for the gravel; only the three limestone mixes of 

the six foamed mixes performed acceptably and all of the foamed gravel mixes had a TSR 

value less than 0.80. 

Some gravel mixtures have had a history of stripping; all the gravel mixes tested 

contained 1% hydrated lime to prevent stripping.  Visible stripping still occurred in some 

cases.  The mix containing the lowest retained stability was the virgin gravel mix with 

foamed asphalt shown in Figure 6.9 (TSR = 0.46).  However, when RAP was added to 
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this mixture stripping was reduced notably for the foamed mix (foamed gravel with 50% 

RAP had TSR = 0.78). 

 
 

 

  
a)  TSR Data for Limestone Mixes (AM-1 to AM-12) 

 

 
b)  TSR Data for Crushed Gravel Mixes (AM-13 to AM-24) 

 
Figure 6.8 Airfield Surface Mixture TSR Test Results 
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Figure 6.9 Aggregate Stripping on Mixture 12.5-0/AM-16 Conditioned Specimens 

Un-Conditioned 

Conditioned 
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CHAPTER 7 
 

HIGHWAY SURFACE MIXTURES 
 
 

7.1 Overview of Highway Surface Mixtures 

This chapter presents results from investigating highway surface mixtures.  

Properties of mixtures tested are located in Section 3.5.3, and experimental program 

details are located in Section 4.3.3.  The raw data for this chapter is located in Doyle and 

Howard (2010b).  The results are organized in two broad categories, 0 and 15% RAP 

control mixture results in Section 7.2 and 25 and 50% RAP recycled mixture results in 

Section 7.3.  Subsections within each category organize data by mixture performance and 

analysis category.  Discussion and results interpretation is provided in Chapter 10. 

 
 

7.2 Control Highway Surface Mixture Results 

 
 

7.2.1 Cantabro Durability Data 

 
 

7.2.1.1 Single Aggregate Blend 

To investigate variability of the Cantabro test method, three sets of thirty plant 

mixed QC specimens were tested: 1) 9.5-15/CM-5 un-aged; 2) 9.5-15/CM-5 aged 

according to R-30; and 3) 9.5-15/CM-6 un-aged.  All specimens were tested for Gmb 

before aging, and the mix design Gmm was used to calculate air voids.  The mixtures had 
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identical aggregate blends from the same asphalt plant, and the only difference was the 

design compactive effort (9.5-15/CM-5 was 50 gyrations and 9.5-15/CM-6 was 65 

gyrations) which caused the design asphalt contents to differ by 0.2%. 

Figure 7.1 presents relative frequency histograms for air voids and mass loss.  To 

evaluate mass loss effects due to minor variation in design asphalt content an un-equal 

variance t-test was performed for un-aged mixtures 9.5-15/CM-5 and 9.5-15/CM-6 (Table 

7.1).  The analysis indicated no significant difference in mean mass loss between the two 

mixtures.  To evaluate the effects of aging on mass loss an un-equal variance t-test was 

performed on the data for mixture 9.5-15/CM-5.  The analysis indicated a significant 

difference in mean mass loss due to R-30 aging (Table 7.1).  R-30 aging was chosen in 

favor of MT-85 aging after testing three replicates of 9.5-15/CM-5 with both protocols 

and observing a higher mass loss with R-30 (10.5% loss) than with MT-85 (9.6% loss). 

The data collected seems to indicate variation in air voids even within a moderate 

range affects mass loss.  In Figure 7.1, lower air voids variation corresponded with lower 

mass loss variation for all three specimen sets as evidenced by the COV data presented.  

Specimens with lower air voids have correspondingly higher VFA for given mixture 

proportions which would seem to result in a specimen that is more resistant to mass loss. 
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        a)  9.5-15/CM-5 Un-aged   b)  9.5-15/CM-5 Un-aged 
 

  
         c)  9.5-15/CM-5 R-30 Aged   d)  9.5-15/CM-5 R-30 Aged 
 

  
        e)  9.5-15/CM-6 Un-aged   f)  9.5-15/CM-6 Un-aged 

 
Figure 7.1 Relative Frequency Histograms of Air Voids and Mass Loss 
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Table 7.1 Un-Equal Variance t-test Comparisons of Mass Loss Results 
 

Condition Mixture ID n Mean Var. t-stat t-crit 
Significantly 
Different? 

Un-aged 9.5-15/CM-5 30 7.23 0.608 0.122 ±2.01 No 
Un-aged 9.5-15/CM-6 30 7.64 1.450    
Un-aged 9.5-15/CM-5 30 7.23 0.583 -12.3 ±2.01 Yes 
R-30 9.5-15/CM-5 30 10.60 1.680    

Note:  Significance testing performed at the 95% confidence level. 
 
 
 

Figure 7.2 plots mass loss and air voids for the three thirty specimen sets.  The 

linear regression equations show at least some correlation of decreased mass loss for 

decreasing air voids.  The slope of the equation for the aged specimen set is higher than 

the un-aged specimen sets.  This is reasonable since specimens with higher air voids have 

greater potential exposure to oxygen during the oven aging period resulting in greater 

binder aging and a more brittle mixture with higher mass loss. 

 
 

 
 
Figure 7.2 Correlation of Air Voids and Mass Loss 
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One source of variation for specimens from the three sets tested could be the 

normal variation of plant produced mixture throughout the paving season.  Differences in 

gradation and asphalt content could explain some of the variability as they would also 

change the air voids.  Interpretation of Cantabro results of specimens compacted to Ndes 

presented in this report should be tempered by the observation that air voids and mass 

loss are collinear to some extent. 

To investigate mass loss variability at a specific air void level, an additional thirty 

specimens of mixture 9.5-15/CM-6 were compacted to 4.0 ± 0.5% air voids and tested 

(Figure 7.3).  Variability of Va is obviously reduced compared to Ndes compacted 

specimens (COV of 5.5% compared to 26.0%); however variability of ML is only slightly 

reduced (Figure 7.1e compared to Figure 7.3b).  Standard deviation was reduced from 

1.20 to 0.737 and COV was reduced from 15.8% to 9.1%.  Mean mass loss of Ndes 

specimens was 7.64% and about the same for controlled density specimens (8.10%). 

 
 
 

  
        a)  9.5-15/CM-6 Un-aged   b)  9.5-15/CM-6 Un-aged 

 
Figure 7.3 Relative Frequency Histograms of Air Voids and Mass Loss 

 
 

0

5

10

15

20

25

3.5 3.6 3.7 3.8 3.9 4.0 4.1 4.2 4.3 4.4 4.5

R
el

at
iv

e 
F

re
q

u
en

cy
 (

%
)

Va (%)

n:  30
Mean: 3.94

Std. dev.:  0.216
Var.:  0.047

COV:  5.5%

0

5

10

15

20

25

7.0 7.2 7.4 7.6 7.8 8.0 8.2 8.4 8.6 8.8 9.0 9.2 9.4 9.6 9.8

R
el

at
iv

e 
F

re
q

u
en

cy
 (

%
)

ML (%)

n:  30
Mean: 8.10

Std. dev.:  0.737
Var.:  0.544

COV:  9.1%



www.manaraa.com

239 

7.2.1.2 Random QA Specimens 

To establish a durability results range for conventional 9.5 mm dense-graded 

Mississippi mixtures, plant mixed QA specimens were tested from twenty two mixtures.  

Basic mixture properties were provided in Table 3.13.  The range of mean mass loss for 

the dense-graded asphalt mixtures presented in Table 7.2 is 2.8 to 11.7%.  The mixture 

with the highest mass loss (9.5-0/CM-23) also had the highest air voids.  A linear 

regression relating air voids to mass loss is provided in the notes of Table 7.2; the 

correlation is noticeable but is not strong.  Figure 7.4 plots the Table 7.2 data sorted by 

binder grade.  In general, specimens with higher air voids have higher mass loss.  No 

specific trends are observed for PG 76-22 binder compared to PG 67-22 binder. 

A stepwise multiple linear regression was performed with the data to relate 

mixture parameters to mass loss.  Fifteen parameters were considered during the 

regression: 1) compactive effort (design gyrations): 2) total asphalt content (Pb); 3) 

effective asphalt content; 4) absorbed asphalt content; 5) mean air voids; 6) voids in 

mineral aggregate; 7) voids filled with asphalt; 8) film thickness; 9) dust to effective 

binder ratio; 10) percentage of gravel aggregate; 11) percentage of limestone aggregate; 

12) percentage of sand aggregate; 13) percentage of RAP; 14) sand ratio of the aggregate 

blend (SR); and 15) surface area of the aggregate blend.  The best regression equation is 

given in the notes of Table 7.2, which is reasonable for the data available. 
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Table 7.2 Mass Loss Results for Control Mixtures 7 to 28 
 

Mixture ID Pb (%) Gravel (%) SR n Avg. Va (%) Avg. ML (%) 
9.5-15/CM-7 5.4 29 40.7 2 3.3 7.3 
9.5-15/CM-8 5.1 29 37.9 2 4.3 2.8 
9.5-10/CM-9 5.5 79 43.0 4 4.6 8.2 
9.5-15/CM-10 5.5 50 40.4 2 4.5 7.2 
9.5-15/CM-11 6.2 40 42.9 4 4.1 7.6 
9.5-15/CM-12 5.4 76 40.6 2 3.4 7.2 
9.5-15/CM-13 5.8 45 40.9 2 4.1 6.0 
9.5-15/CM-14 5.5 61 38.7 2 4.5 5.3 
9.5-15/CM-15 6.0 68 49.8 2 4.4 10.5 
9.5-15/CM-16 6.1 37 43.5 2 5.9 10.6 
9.5-15/CM-17 5.6 52 39.3 2 4.6 8.5 
9.5-15/CM-18 5.3 50 37.4 2 4.2 5.2 
9.5-15/CM-19 5.5 31 38.4 2 3.5 5.4 
9.5-15/CM-20 6.4 40 42.9 2 2.3 3.9 
9.5-10/CM-21 5.7 34 53.0 2 4.8 6.8 
9.5-15/CM-22 5.8 74 46.5 2 4.4 10.7 
9.5-0/CM-23 5.8 40 46.3 2 7.1 11.7 
9.5-10/CM-24 5.6 64 41.4 2 4.1 9.4 
9.5-10/CM-25 5.4 29 42.6 2 3.1 4.8 
9.5-6/CM-26 5.3 28 42.2 8 4.6 7.6 
9.5-10/CM-27 6.4 37 43.5 4 6.2 10.7 
9.5-10/CM-28 5.2 49 43.1 2 5.8 6.6 
Note:  ML = 1.44Va + 1.06; R2 = 0.46; n = 22 
  ML = -15.2+1.10Va+1.63Pb+0.0408 (Gravel %)+0.157SR; R2 = 0.64; n = 22 

 
 
 

 
 
Figure 7.4 Correlation of Mass Loss and Air Voids for Mississippi Mixtures 
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7.2.1.3 Specific Control Mixtures 

The control mixtures used as a comparison for several other properties throughout 

the report were tested and results are provided in this section.  Testing was performed as 

described in Section 4.2.4.  Table 7.3 provides un-aged mass loss results, which ranged 

from 4.7 to 11.8%.  Large replicate testing shown in Section 7.2.1.1 resulted in mass loss 

values within this range for un-aged testing of 7.3 and 7.6%.  The 0% RAP mixture had 

higher mass loss than most of the 15% RAP mixtures; conventional wisdom would 

predict a mixture without RAP would have lower mass loss than mixtures with 15% 

RAP.  A variety of factors including mixture composition could explain the behavior.  

The 0% RAP control mixture had a dust to effective binder ratio of 1.7 (above 

recommended tolerances) whereas the other control mixtures are 1.0 to 1.2.  The 0% 

RAP mixture results could be due to the high dust content.  The lowest mass loss was 

observed for the plant-warm-mixed PG 76-22 mixture (9.5-15/CM-3). 

Table 7.4 provides aged mass loss results, which ranged from 7.6 to 10.6%.  

Large replicate testing shown in Section 7.2.1.1 resulted in mass loss values within this 

range for aged testing of 10.6%.  Aging with R-30 produced greater mass loss for 9.5-

15/CM-2 and the same mass loss for 9.5-15/CM-3 when compared to MT-85.  R-30 aging 

produced greater mass loss in Section 7.2.1.1 when compared to MT-85. 

Table 7.5 provides mass loss results for un-aged target density specimens of 9.5-

15/CM-3.  Mass loss for the mixture is increased 3.1% relative to the Ndes compacted 

specimens (average 3.0% air voids).  This is noticeable but not unreasonable. 
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Table 7.3 Mass Loss Results for Un-Aged Control Mixtures 
 
Mixture ID n Avg. Air Voids (%) Avg. ML (%) 
9.5-0/CM-1 5 5.0 11.5 
9.5-15/CM-2 5 5.9 8.0 
9.5-15/CM-3 5 3.0 4.7 
9.5-15/CM-4a 5 7.5 11.8 
9.5-15/CM-4b 5 6.0 11.0 
9.5-15/CM-4c 3 5.4 9.9 

 
 
 

Table 7.4 Mass Loss Results for Aged Control Mixtures 
 
Mixture ID Aging Protocol n Avg. Air Voids (%) Avg. ML (%) 
9.5-15/CM-2 R-30 3 5.7 10.6 
 MT-85 3 6.1 9.5 
9.5-15/CM-3 R-30 3 2.8 7.6 
 MT-85 3 3.0 7.6 

 
 
 

Table 7.5 Mass Loss Results for Target Density Un-Aged Control Mixtures  
 
Mixture ID n Avg. Air Voids (%) Avg. ML (%) 
9.5-15/CM-3 3 4.0 7.8 

 
 
 
Table 7.6 presents un-equal variance t-tests of mass loss differences between 

aging protocols and between aged and un-aged testing.  The R-30 aging protocol resulted 

in higher mass loss than the MT-85 aging protocol but the difference was only 

statistically significant with 9.5-15/CM-2.  Results indicate aged specimens from either 

aging protocol exhibited significantly higher mass loss than the un-aged specimens for a 

comparable level of air voids.  In general, aged specimens exhibited mass loss on the 

order of 2 to 4% higher than un-aged specimens of the same mixture. 
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Table 7.6 Un-Equal Variance t-test Comparisons of Mass Loss Results 
 

Mixture ID Condition n Mean Var. t-stat t-crit 
Significantly 
Different? 

9.5-15/CM-2 MT-85 3 9.47 0.013 6.88 ±3.18 Yes 
 R-30 3 10.60 0.063    
 Un-aged 5 8.02 0.752 -3.68 ±2.78 Yes 
 MT-85 3 9.47 0.013    
 Un-aged 5 8.02 0.752 -6.15 ±2.57 Yes 
 R-30 3 10.06 0.063    
9.5-15/CM-3 MT-85 3 7.57 0.243 0.07 ±2.78 No 
 R-30 3 7.60 0.430    
 Un-aged 5 4.66 0.488 -6.88 ±2.45 Yes 
 MT-85 3 7.57 0.243    
 Un-aged 5 4.66 0.488 -5.99 ±2.57 Yes 
 R-30 3 7.60 0.430    
Note:  Significance testing performed at the 95% confidence level. 

 
 
 

7.2.2 BBR and IDT Data 

Prior to full analysis, BBR mixture testing data was evaluated for reasonableness 

and outliers.  Reasonableness was evaluated by two checks: 1) deflection of the mixture 

beam increased (and the corresponding calculated stiffness decreased) over the entire 

duration of the test: and 2) the slope of the stiffness curve increased over the entire 

duration of the test (concept identified in literature review).  Any data points that failed 

the two checks was omitted from analysis (very small percentage of the data). 

Occasional outliers were observed in the BBR data that passed the reasonableness 

checks where the stiffness was less than half that of other replicates of the same mixture 

and were not representative of the mixture.  Information found during literature review 

revealed that when mixture beams are sawn from a compacted asphalt specimen, the 

orientation of aggregate particles is essentially random and in most cases a representative 

cross section of the asphalt mixture is obtained in a sawn mixture beam (Marasteanu et al. 
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2009).  However in some cases the mastic film between aggregates may be oriented in 

such as way that it in a localized area a large portion of the beam cross-section is 

composed of the mastic film.  This results in a reduction in the measured stiffness of the 

beam compared to a beam of representative cross-section. 

A consistent method to identify these occurrences of mixture stiffness data well 

below other replicate measurements for the mixture was used.  For cases where five 

replicates were tested, if the standard deviation of stiffness measured at 60 seconds was 

higher than 4.0 then the data point which was farthest from the mean value for the mix 

(i.e. very low stiffness) was removed.  For cases where three replicates were tested, a 

cutoff value for standard deviation of 5.0 was used to perform the same data evaluation.  

All remaining replicates were averaged and used for analysis. 

 
 

7.2.2.1 Test Method Variability 

To evaluate variability of the BBR mixture test method, multiple gyratory 

compacted specimens of 9.5-15/CM-4a, 9.5-15/CM-4b, and 9.5-15/CM-1 were tested.  

Four SGC specimens were prepared of mixture 9.5-15/CM-4a and three gyratory 

specimens each were prepared of mixtures 9.5-15/CM-4b, and 9.5-15/CM-1.  Five beam 

specimens were tested at each of four test temperatures from each SGC specimen. 

Mixture 9.5-15/CM-4a the test data was evaluated for reasonableness and outliers; 

three outliers at -24 C were omitted from analysis.  For control mixture 9.5-15/CM-4b, 

the data was evaluated for reasonableness and outliers; no outliers found.  For control 

mixture 9.5-15/CM-1, the data was evaluated for reasonableness and outliers; two outliers 

at -24 C and one at -06 C were omitted from analysis. 
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Figure 7.5 presents BBR stiffness test data for mixture 9.5-15/CM-4a organized 

by test temperature.  Error bars at a 95% confidence interval (± 1.96 standard deviations) 

are shown for the test data at each test time; the actual standard deviations of test data at a 

particular test time are shown next to the respective error bars.  For BBR stiffness 

measurements at all four temperatures the standard deviations decrease as the test time 

increases.  The same trend is seen in the data for mixtures 9.5-15/CM-4b and 9.5-15/CM-

1; figures are omitted in the interest of brevity.  This result indicates that the stiffness 

values of replicate beam specimens of a mixture tend to converge at longer test times.  

Therefore better statistical comparisons of stiffness between different mixtures can be 

made by using data at longer test times. 

At -24 C test temperature the standard deviations range from 3.2 at 8 second test 

time to 2.09 at 960 second test time.  Standard deviations of the test data at -18 C test 

temperature are higher and range from 4.21 at 8 second test time to 2.47 at 960 second 

test time.  Standard deviations of test data at both -12 C and -06 C test temperatures are 

much smaller and are all less than 2.  Data for mixtures 9.5-15/CM-4b and 9.5-15/CM-1 

have the highest standard deviations at the -24 C test temperature and the lowest standard 

deviations at either the -12 C or the -06 C test temperature.  These results indicate that 

variability of the BBR mixture test method tends to be higher at lower test temperatures. 

Variability of the BBR mixture stiffness test method is within a reasonable range 

provided the data is first examined and any outlying data omitted from analysis.  For the 

control mixture data used to evaluate variability, only six outliers were identified among 

the 200 data points (3% of the data).  Repeatable results can be obtained with the test 

method. 
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  a)  -24 C Test Temperature    b)  -18 C Test Temperature 
 

  
  c)  -12 C Test Temperature    d)  -06 C Test Temperature 

 
Figure 7.5 BBR Stiffness Test Data Variability for Mixture 9.5-15/CM-4a 

 
 
 

7.2.2.2 Control Mixture Data 

Figures 7.6 and 7.7 present isotherms of mixture stiffness from averaged test data 

for control mixtures 1, 2, and 3 and 4a, 4b, and 4c, respectively.  The data shows the 

same general trends of behavior that are observed in typical BBR binder testing.  

Isotherms at the lowest test temperature yield the highest stiffness and generally have the 

flattest slope.  Isotherms at increasing temperatures have lower stiffness and generally 

have a steeper and gradually increasing slope. 
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In general the stiffness isotherms for control mixture 1 are as high as or higher 

than all the other control mixtures and also tend to have flatter curves at all test 

temperatures.  Also the -06 C isotherm is quite close the -12 C isotherm whereas for most 

of the other control mixtures the -06 C isotherm tends to be noticeably less stiff than the 

data at colder temperatures.  These results for control mixture 1 are hypothesized to be 

due to the high dust to effective binder ratio of this mixture (value of 1.7 was out of 

MDOT specification) which will likely result in stiffening of the mixture.   

Figure 7.8 presents results for the three versions of control mixture 4 (plant mixed 

PG 67, lab mixed PG 67, lab mixed PG 76) organized by test temperature to allow for 

assessment of the effects of different binder grades and mixing preparation methods.  

Stiffness isotherms of the plant mixed version of control mixture 4 (9.5-15/CM-4a) and 

the laboratory mixed version with PG 67-22 (9.5-15/CM-4b) are nearly identical at the -

18 and -06 C test temperatures.  In contrast the stiffness of the laboratory mixed version 

is lower than that of the plant mixed version at the -24 and -12 C test temperatures but the 

difference is relatively small.  There is no conclusive evidence that preparation method 

(plant compared to laboratory) produces any meaningful differences in mixture stiffness 

at low temperatures as measured by this test method. 
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a)  Mixture 9.5-0/CM-1 

 
b)  Mixture 9.5-15/CM-2 

 
c)  Mixture 9.5-15/CM-3 

 
Figure 7.6 BBR Stiffness Data for Control Mixtures 1 to 3 
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a)  Mixture 9.5-15/CM-4a 

 
b)  Mixture 9.5-15/CM-4b 

 
c)  Mixture 9.5-15/CM-4c 

 
Figure 7.7 BBR Stiffness Data for Control Mixture 4 
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The stiffness isotherm of the mixture with polymer modified binder (PG 76-22) at 

-24 C lies between the isotherms for mixtures with neat binder (PG 67-22) and at -18 C 

all three isotherms are indistinguishable.  This result is reasonable since these test 

temperatures bracket the low temperature performance grade of the binders.  

Interestingly, at -12 C and -06 C the PG 76-22 mixture stiffness isotherms are slightly 

higher than the isotherms for neat binder mixtures although not dramatically so. 

 
 
 

  

       a)  -24 C Test Temperature   b)  -18 C Test Temperature 
 

  

       c)  -12 C Test Temperature   d)  -06 C Test Temperature 

 
Figure 7.8 BBR Stiffness Data for Control Mixture 4 by Test Temperature 
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Figure 7.9 presents the test data from plant produced control mixtures 2, 3, and 4a 

organized by test temperature for comparison between plant produced mixtures.  Control 

mixture 2 has the lowest stiffness for each test temperature.  This is desirable from the 

standpoint of susceptibility to thermal cracking (i.e. a less stiff mixture results in lower 

thermal stress and reduced potential for thermal cracks provided strengths are equivalent 

to stiffer mixes).  This is also reasonable since it is a low traffic (50 design gyration) 

mixture which results in a greater effective binder content relative to mixtures with 

higher compactive efforts (65 or 85 gyration mixtures). 

Stiffness of both the high traffic mixtures is higher than the low traffic mixture. 

Control mixture 3 has the highest stiffness for each test temperature.  Control mixture 4a 

has an intermediate level of stiffness at each test temperature.  Control mixture 3 being 

stiffer is not thought to be due to the polymer modified binder but rather to some other 

mixture parameter (e.g. aggregate properties, effective binder content, etc.) based on 

testing control mixture 4 with different binder grades.  The range of mixture stiffness in 

Figure 7.9 was taken to represent a reasonable expected range of low temperature mixture 

stiffness for Mississippi mixtures. 

Tensile strength testing at low temperatures was performed for control mixtures 2 

and 3 which represented the lowest and highest stiffness control mixtures in BBR testing.  

Properties were determined according to Section 4.2.2 and results are presented in Table 

7.7.  At the lowest test temperatures (-18 and -24 C), control mixture 3 is stiffer than 

control mixture 2; however at -12 C the strengths are the same, and at -06 C, control 

mixture 3 is less stiff than control mixture 2. 
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       a)  -24 C Test Temperature   b)  -18 C Test Temperature 

  

       c)  -12 C Test Temperature   d)  -06 C Test Temperature 

 
Figure 7.9 BBR Stiffness Data for Control Mixtures 2, 3, and 4 by Test Temperature 

 
 
 

Table 7.7 Low Temperature IDT Results for Control Mixtures 2 and 3 
 
 Test Temperature and Average Tensile Strength (kPa) 
Mixture ID -06 C -12 C -18 C -24 C  
9.5-15/CM-2 4554 3567 3994 3786  
9.5-15/CM-3 4291 3547 4507 4116  
Note:  Each value is average of two test results. 
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7.2.2.3 Thermal Cracking Analysis 

Thermal cracking analysis was conducted generally according to the method in 

AASHTO R 49 (AASHTO 2009) though several important modifications to the AASHTO 

standard practice were necessary since mixture test data was utilized instead of binder 

data.  The analysis was performed with commercially available software (TSAR™ 

Version 0.9.15).  The analysis procedure is described briefly in the following paragraphs. 

Three mixture parameters are needed as inputs for thermal cracking analysis: 1) 

density; 2) linear coefficient of thermal contraction (Bmix); and 3) glass transition 

temperature (Tg).  Mean mixture bulk specific gravity (Gmb) was used for mixture density.  

Thermal contraction coefficients were estimated for each mixture using Eq. 2.2.  The 

thermal contraction coefficients of each aggregate blend needed for Eq. 2.2 were 

estimated as an average weighted by the relative proportion of each aggregate type 

(limestone or gravel) in the mix.  It was observed that the estimated Bmix values from Eq. 

2.2 did not vary much between all the different mixes (including the 25 and 50% RAP 

mixes discussed later in this chapter).  As a result, the average value of Bmix for all 

highway surface mixtures of 2.0x10-5 (1/C) was utilized for all thermal cracking analysis 

performed in this chapter.  The work of Nam and Bahia (2004) would tend to indicate 

that mixture thermal expansion coefficients may vary on either side of the glass transition 

temperature.  However no data was collected as part of this study to evaluate that 

behavior for the mixes studied; therefore the same value of Bmix was used for 

temperatures above and below Tg.  Nam and Bahia (2004) found that Tg values varied 

based somewhat based on aggregate type and gradation but were within a relatively small 
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range for a particular binder low PG temperature.  A Tg of -30 C was selected for all 

mixes in this study based on the work of Nam and Bahia (2004). 

The first analysis step was to plot the four BBR isotherms on a log-log scale for 

each mixture (Figure 7.6 and Figure 7.7).  The isotherms were shifted horizontally to 

produce a single curve with reasonable overlap between isotherms.  The linear 

relationship between shift factors is represented by the Arrhenius equation (Eq. 7.1). 

( ) 1

1 1
ln T

ref

a a
T T

 
= −  

 
 (Eq. 7.1) 

Where: 

aT = shift factor 

a1 = mixture dependent constant 

T = temperature of isotherm (Kelvin) 

Tref = reference temperature (Kelvin) 

For the selected reference temperature, the time component of test data from other 

test temperatures was converted to reduced time (ξ) using Eq. 7.2.  The test data was then 

used to generate a plot of stiffness modulus with reduced time as the x-axis.  This results 

in a single master curve of stiffness at the selected reference temperature. 

        T

t

a
ξ =  (Eq. 7.2) 

Where: 

ξ = reduced time (e.g. computed loading time at the reference temperature) 

t = physical loading time (sec) 
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The resulting master curve of stiffness modulus (S) is a function of reference 

temperature and reduced time.  Eq. 7.3 is the Christensen-Anderson-Sharrock (CAS) 

master curve model for stiffness modulus (Rowe et al. 2001).  For each mixture, the three 

parameters of Sglassy, λ and β were fitted to the shifted test data using a modified non-

linear least squares optimization method (Abatech, Inc. 2000, Rowe et al. 2001). 

( )
1

, 1ref glassyS T S
β βξξ

λ

−
  = +  

   
 (Eq. 7.3) 

Where: 

Sglassy = glassy modulus (GPa) 

λ = Christensen-Anderson critical time (sec) 

β = Christensen-Anderson exponent 

Results of the stiffness master curve fitting procedure for the surface highway 

control mixtures are given in Table 7.8.  The fit of Eq 7.1 to the shifted BBR isotherms is 

generally excellent as evidenced by the high R2 values.  The fit of the CAS master curve 

to the data is also very reasonable as evidenced by the low RMS error values. 

 
 
Table 7.8 Stiffness Modulus Master Curve Parameters 
 

Mixture Arrhenius Equation CAS Parameters for Stiffness Master Curve 
ID Tref (C) a1 (---) R2  Error (%)a Sglassy (GPa) λ (sec) β (---) 
9.5-0/CM-1 -06 20662.4 0.95 1.0 35.5 59.744x106 0.139857 
9.5-15/CM-2 -06 23578.9 0.99 1.5 28.6 53.111x103 0.184053 
9.5-15/CM-3 -06 30154.1 0.99 0.99 66.0 102.82x106 0.103023 
9.5-15/CM-4a -06 28605.2 0.99 1.7 54.9 1.0084x109 0.096452 
9.5-15/CM-4b -06 26199.2 0.94 2.0 44.7 2.0355x109 0.098132 
9.5-15/CM-4c -06 24192.6 0.99 0.81 36.1 1.2386x106 0.148669 
a)  Root mean square (RMS) error of the three parameter curve fitting. 
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For the next analysis step, six analysis parameters were chosen: 

• Start temperature: 0 C 

• End temperature: -50 C 

• Cooling rate: 1 C/hr 

• Temperature increment: 0.2 C 

• Time increment: 720 sec 

• Pavement constant: 1 

In AASHTO R 49 binder analysis, the pavement constant “serves as a damage 

transfer function to convert the thermal stresses calculated from laboratory [binder] data 

to thermal stresses generated in the pavement” (AASHTO 2009).  Since asphalt mixture 

was evaluated in this study and not asphalt binder, a value of one was chosen for the 

pavement constant. 

Determination of thermal tensile stress in the asphalt mixture then proceeded 

according to the procedure given in AASHTO R 49 (Section 7.3) with the appropriate 

mixture and analysis parameters.  The only deviation from the procedure was use of the 

CAS form of master curve fitting function previously discussed instead of the specified 

Christensen-Anderson-Marasteanu (CAM) form of master curve fitting function. 

Once data for thermal stress as a function of temperature was obtained from the 

analysis software, the data was plotted and estimates of critical cracking temperatures 

(Tcr) were made.  The two asymptote procedure (TAP) of Shenoy (2002) was utilized to 

estimate Tcr for all mixtures as described in the following paragraph.  Additionally, Tcr 

was estimated as the temperature at which thermal stress and tensile strength intersected 

for all mixtures where tensile strength data at various temperatures was available. 
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Figure 7.10 plots the development of thermal stress as temperature drops for 

mixture 9.5-0/CM-1 data.  The first asymptote was fitted to the first six data points of the 

thermal stress curve (i.e. 0 to -5 C).  The second asymptote was fitted to the last six data 

points of the thermal stress curve (i.e. -45 to -50 C).  The temperature at which the two 

asymptotes intersect was determined mathematically.  It is interpreted as Tcr according to 

the TAP method of Shenoy (2002).  For mixture 9.5-0/CM-1 the Tcr temperature is 

estimated to be -27.3 C. 

Tcr analysis for control mixtures 9.5-15/CM-2 and 9.5-15/CM-3 are presented in 

Figure 7.11a.  These mixtures represented the relative highest and lowest stiffness values 

in Figure 7.9.  Tensile strength data for these mixtures from Table 7.7 was also plotted in 

Figure 7.11a.  For both mixtures the estimated thermal stress at -24 C is still less than the 

measured strength; the intersection of the stress and strength was estimated by 

extrapolation.  For CM-2, the TAP method has estimated Tcr of -28.1 C and the 

intersection of stress and strength is estimated to be -31 C.  For CM-3, the TAP method 

has estimated Tcr of -29.8 C and stress and strength intersection is estimated to be -27 C. 

Figure 7.11b presents data for all three versions of mixture CM-4.  Very little 

difference is observed between the thermal stress curves and the estimated Tcr values.  

This result also supports a conclusion that preparation method (plant compared to 

laboratory) produces no meaningful differences in low temperature properties. 
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Figure 7.10 Two Asymptote Procedure to Estimate Tcr for 9.5-0/CM-1 Data 
 

 
 
 

  

        a)  9.5-15/CM-2 and 9.5-15/CM-3          b)  9.5-15/CM-4  

 
Figure 7.11 Tcr Analysis for Highway Control Mixtures CM-2 to CM-4 
 
 
 
7.2.3 Rutting Data 

Two test methods were utilized to evaluate rutting in a hot-dry condition: 1) APA 

rut testing; and 2) PURWheel dry protocol testing.  APA and PURWheel testing were 

performed at 64 C for control mixtures 2, 3, and 4. 
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7.2.3.1 APA 

For 15% RAP control mixtures (9.5-15/CM-2, 9.5-15/CM-3, and 9.5-15/CM-4) 

APA rut testing was performed on SGC compacted specimens as described in Section 

4.2.6; Table 7.9 summarizes the data.  Average air voids are provided as well as total rut 

depths at 2,000 and 8,000 cycles.   

Two types of regression equations were fitted to the data to provide quantitative 

parameters for comparison: 1) linear regression between 2,000 and 8,000 cycles; and 2) 

power law regression of data between 0 and 8,000 cycles.  Linear regression of data 

between 2,000 and 8,000 cycles was chosen to represent the rutting data in the secondary 

flow region after initial densification.  Power law regression was chosen to provide a fit 

of all the rutting data including initial densification and secondary flow.  Fitted regression 

constants and corresponding coefficients of determination are provided in Table 7.9; the 

regression equations generally provided a very good fit as evidenced by the R2 values of 

0.90 or greater. 

Control mixture 2 performed rather poorly with respect to APA rutting; total rut 

depths were over 11 mm regardless of air void level.  Control mixture three performed 

well with total rut depths of 3.5 mm for nominal 7% air voids and 6.3 mm at nominal 

10% air voids.  With nominal 7% air voids, control mixture 4 with neat binder rutted on 

the order of 5 mm for both plant and laboratory mixed versions; control mixture 4 with 

polymer modified binder rutted 2.1 mm. 
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Table 7.9 APA Results for Control Mixtures 2, 3 and 4 
 

Mixture Avg. Rut Depth (mm) Linear Rutting Ratea Power Lawb

ID Va (%) 2000 8000 Slope (10-6) Intercept R2 a b R2

9.5-15/CM-2 5.8 9.0 12.2 496 8.56 0.94 0.574 0.350 0.93 
 9.6 9.0 11.6 381 8.86 0.91 0.654 0.332 0.90 
9.5-15/CM-3 6.8 2.0 3.5 243 1.64 0.97 0.059 0.458 0.99 
 9.5 4.4 6.3 299 4.04 0.97 0.181 0.405 0.92 
9.5-15/CM-4a 6.8 3.6 5.0 228 3.32 0.96 0.102 0.448 0.91 
 9.4 2.5 3.7 182 2.27 0.98 0.112 0.396 0.94 
9.5-15/CM-4b 7.1 3.1 4.7 238 2.91 0.95 0.072 0.474 0.92 
9.5-15/CM-4c 6.9 1.4 2.1 113 1.23 0.99 0.113 0.327 0.95 
a)  Linear rutting rate regression analysis is based on averaged data between 2,000 and 

8,000 cycles. 
b)  Power law regression analysis is based on averaged data and Eq. 2.4. 

 
 
 
7.2.3.2 PURWheel Dry Protocol 

For 15% RAP control mixtures (9.5-15/CM-2, 9.5-15/CM-3, and 9.5-15/CM-4) 

PURWheel dry rut testing was performed on LAC compacted specimens as described in 

Section 4.2.7.1; the data is located in Tables A.7, A.9, A.11, A.13, and A.15.  Table 7.10 

summarizes the data.  Two types of regression equations were fitted to the data to provide 

quantitative parameters for comparison: 1) linear regression of the data between 2,000 

and 20,000 passes; and 2) power law regression of data between 0 and 20,000 passes.  

The regression equations generally provided a very good fit of the data for control 

mixtures 3 and 4 as evidenced by the R2 values of 0.88 or greater.  Linear regression 

equations could not be fitted to data from control mixture 2 since all specimens of that 

mixture failed before 2,000 passes.  Power law regression equations were fitted to the 

control mixture 2 rutting data and resulted in reasonable R2 values; however the R2 values 

should be interpreted in light of the limited amount of data used to perform regression. 

Similar to APA results, control mixture 2 performed poorly in the PURWheel dry 

protocol rutting test; all specimens exhibited an excessive level of rutting prior to 2,000 
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passes which resulted in early termination of the test to prevent equipment damage.  Post-

test visual observations of the specimens revealed failure of the mix in shear as evidenced 

by the sharp vertical edges of the wheel path (seen in Figure A.7).  The PURWheel tires 

were coated with a film of binder once testing was complete. 

 
 

Table 7.10 PURWheel Dry Test Results for Control Mixtures 2, 3, and 4 
 
   Rut Depth  Linear Rutting Rateb Power Lawc

Mixture ID Va (%)a Rep Pass mm Slope (10-6) Intercept R2 a b R2

9.5-15/CM-2 9.2 1-L 1134 24.5 --- --- --- 0.001 1.50 0.86 
  1-R 800 29.0 --- --- --- 1.0 E-4 1.88 0.87 
 9.1 2-L 1230 27.5 --- --- --- 0.001 1.45 0.86 
  2-R 272 12.5 --- --- --- 4.0 E-6 2.83 0.95 
Average 9.2 --- 859 23.4 --- --- --- 0.001 1.92 --- 
9.5-15/CM-3 6.9 1-L 20 k 7.0 200 2.92 0.96 0.095 0.438 0.94 
  1-R 20 k 4.0 100 2.16 0.98 0.143 0.343 0.89 
 8.8 2-L 20 k 5.6 200 2.21 0.95 0.027 0.547 0.94 
  2-R 20 k 7.1 200 2.79 0.98 0.078 0.457 0.94 
Average 7.9 --- 20 k 5.9 175 2.52 --- 0.086 0.446 --- 
9.5-15/CM-4a 8.0 1-L 20 k 4.2 100 2.23 0.97 0.191 0.312 0.91 
  1-R 20 k 6.0 200 3.07 0.96 0.148 0.378 0.90 
 11.5 2-L 20 k 7.3 200 3.07 0.95 0.120 0.416 0.92 
  2-R 20 k 11.0 400 3.85 0.96 0.068 0.518 0.96 
Average 10.3 --- 20 k 7.1 225 3.06 --- 0.132 0.406 --- 
9.5-15/CM-4b 10.8 1-L 20 k 11.7 400 4.02 0.99 0.099 0.480 0.95 
  1-R 20 k 17.8 700 4.78 0.99 0.216 0.555 0.96 
Average 10.8 --- 20 k 14.8 550 3.06 --- 0.158 0.518 --- 
9.5-15/CM-4c 11.2 1-L 20 k 4.8 100 2.63 0.95 0.185 0.332 0.88 
  1-R 20 k 5.5 100 3.07 0.94 0.216 0.331 0.88 
Average 11.2 --- 20 k 5.2 100 2.85 --- 0.201 0.332 --- 

a)  Specimen air voids correlated to AASHTO T 331. 
b)  Linear rutting rate regression analysis is based on averaged data between 2000 and 

20,000 passes. 
c)  Power law regression analysis is based on averaged data and Eq. 2.4. 

 
 
 

Control mixture 3 performed very well in PURWheel dry rut testing; average rut 

depths at 20,000 passes were about 6 mm.  The other control mixture with polymer-

modified binder (9.5-15/CM-4c) also performed very well with an average total rut depth 
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of about 5 mm.  These two mixtures had the lowest values of slope and intercept 

parameters for linear rutting rate regression performed data from 2,000 to 20,000 passes. 

Control mixture 4a (plant mixed with PG 67-22 binder) performed well; average 

rut depths were about 7 mm, not greatly higher than those for polymer-modified binder 

mixtures.  Control mixture 4b (also with PG 67-22 binder) did not perform as well as its 

plant mixed counterpart; average total rut depths were about 15 mm.  This result is 

unexpected.  Variations in mean air voids of the specimens do not fully explain the 

difference in results since mean specimen air voids for the laboratory mixed specimens 

are within the range of air voids of plant mixed specimens. 

In general, the PURWheel dry protocol test results provided the same relative 

ranking of rutting performance of control mixtures as did the APA test results.  Control 

mixture 2 was observed to have the worst performance, and both control mixtures with 

polymer-modified binder performed similarly and very well.  Notable differences in 

rutting performance between field and laboratory mixed versions of CM-4 with neat PG 

67-22 binder were observed in PURWheel results that were not seen in APA results. 

 
 

7.2.4 Moisture Damage Data 

Two test methods were utilized to evaluate susceptibility of the mixtures to 

moisture damage: 1) TSR; and 2) PURWheel wet protocol.  The TSR test is a standard 

moisture susceptibility test currently utilized as a screening tool by many agencies 

including MDOT.  The PURWheel is a research grade loaded wheel tracking test that is 

similar in some respects to the Hamburg wheel tracking test which is used by a few 

agencies (e.g. Texas DOT). 
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7.2.4.1 TSR 

TSR moisture susceptibility testing was performed on SGC compacted specimens 

as described in Section 4.2.5 for control mixture 9.5-0/CM-1.  For control mixtures 9.5-

15/CM-2, 9.5-15/CM-3, and 9.5-15/CM-4 the TSR values reported on the MDOT mix 

design sheet were utilized.  Control mixture TSR results are summarized in Table 7.11.  

All mixtures have acceptable TSR results (i.e. greater than 80%). 

 
 
Table 7.11 TSR Results for Control Mixtures 
 

Mixture Conditioned Set  Un-Conditioned Set  
ID Avg. Va (%) Sat (%) St (kPa)  Avg. Va (%) St (kPa) TSR (%) 
9.5-0/CM-1 7.5 62.0 1111  7.6 1208 92.0 
9.5-15/CM-2 --- --- ---  --- --- 93.6 
9.5-15/CM-3 --- --- ---  --- --- 94.5 
9.5-15/CM-4a --- --- ---  --- --- 94.5 
Note:  Data for mixtures 2, 3, and 4a was taken from MDOT mix design sheets. 

 
 
 

7.2.4.2 PURWheel Wet Protocol 

PURWheel wet protocol testing was performed on LAC compacted specimens of 

all control mixtures except 9.5-0/CM-1 as described in section 4.2.7.2 of the experimental 

program.  Control mixture PURWheel wet test data is found in Tables A.8, A.10, A.12, 

A.14, and A.16.  Analysis of the wet test data was performed as described in the 

following paragraph. 

The data was first plotted and examined for evidence of moisture induced 

damage.  Figure 7.12 provides two example sets of PURWheel wet test data from two 

different mixtures.  Test Data 1 does not provide any evidence of moisture induced 

damage; the curve resembles a curve from the PURWheel dry test and continues 
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smoothly all the way to 20,000 passes.  Test Data 2 has the same general shape as dry test 

data up to about 5,000 passes.  Beginning at approximately 5,000 passes the slope of the 

curve gradually starts to steepen.  Eventually the slope of the curve becomes close to 

vertical in the vicinity of 7,000 passes.  This is evidence of moisture induced damage.  

Visual observations of specimens at this stage typically reveal bare aggregate surfaces, 

cracks in the wheel path, and sometimes dislodged and uncoated aggregate.  Photographs 

of test specimens are provided in Appendix A that show these behaviors for moisture 

damaged specimens. 

 
 

 
 

Figure 7.12 Example of PURWheel Moisture Damage Data Analysis Technique 
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power law equation was fitted to the test data between 0 and 5000 passes.  Assessment of 

where the curve began to steepen and what portion of the data provided the best fit of the 

power law regression equation was accomplished by incrementally increasing the amount 

of data used for the regression until the R2 value began to decrease.  Next a linear 

regression equation was fitted to the portion of the data with the steepest slope beginning 

at the end of the test and progressing backward. The amount of data used for the 

regression was determined by incrementally increasing the amount of data included until 

the R2 value was maximized. 

Coefficients of the two regression equations were utilized to determine the 

intersection point of the equations.  The number of passes where the fitted regression 

equations intersected was considered to be the stripping inflection point (SIP) as shown 

in Figure 7.12.  Calculation of the SIP was rounded to the nearest 500 passes.  The power 

regression equation was extended forward and the linear regression equation was 

extended backward in Figure 7.12 to demonstrate where the two curves intersect.  For the 

example data in Figure 7.12 the SIP was 7,000 passes. 

Summary plots of PURWheel test results for control mixtures are presented in 

Figures 7.13 to 7.17; data from both wet and dry PURWheel test protocols are presented 

in the figures to facilitate discussion of mixture relative performance.  As seen in Figure 

7.13, all of the 9.5-15/CM-2 test specimens failed in less than 1,500 passes.  A slight 

amount of binder was observed to be removed from the aggregate surface in wet test 

specimens.  As discussed in Section 7.2.3.2, control mixture 2 performed very poorly in 

PURWheel dry testing; this is also observed in the wet test data.  No differences are 
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observed between wet or dry test data but this result is not informative since the 

specimens all failed so quickly. 

For control mixture 9.5-15/CM-3, two of the four wet specimens exhibited 

moisture damage as shown in Figure 7.14.  Some binder was observed to be removed 

from the aggregate surface in moisture damaged specimens but no wheel path cracking or 

loose aggregate was seen.  The two specimens without moisture damage exhibited 

deformation behavior similar to the dry test results although for one of them it appeared 

that moisture damage may have initiated near the end of the test but it did not lead to 

failure before the test was over. 

For control mixture 9.5-15/CM-4a only one of the four wet test specimens 

exhibited moisture damage as shown in Figure 7.15; a small amount of binder was 

removed from the aggregate surface but no loose aggregate or wheel path cracking was 

observed.  The wet test specimens without moisture damage behaved much the same as 

dry test specimens.  Both wet specimens of the laboratory mixed version of control 

mixture four (9.5-15/CM-4b) exhibited evidence of moisture damage as shown in Figure 

7.16; noticeable cracking both within and beside the wheel path and minimal loose 

aggregate was observed for the specimens.  One of the two wet specimens of laboratory 

mixed 9.5-15/CM-4c with polymer modified binder shown in Figure 7.17 exhibited 

moisture damage and the other did not. 
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Figure 7.13 PURWheel Test Results for Mixture 9.5-15/CM-2 
 
 
 

 
 
Figure 7.14 PURWheel Test Results for Mixture 9.5-15/CM-3 
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Figure 7.15 PURWheel Test Results for Mixture 9.5-15/CM-4a 
 
 
 

 
 
Figure 7.16 PURWheel Test Results for Mixture 9.5-15/CM-4b 
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Figure 7.17 PURWheel Test Results for Mixture 9.5-15/CM-4c 
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protocols compared to the plant mixed version.  Control mixture 9.5-15/CM-2 would also 

be considered performance classification 1 but since in general the PURWheel 

overwhelmed the mixture in both wet and dry tests this does not necessarily provide 

meaningful information about the mixture’s performance related to moisture damage. 

 
 

Table 7.12 Summary of PURWheel Wet Test Results for Control Mixtures 
 

    Failure  Visual Assessment 

Mixture ID Va (%)a Rep SIP Pass (mm) Bare Agg. Loose Agg. Crack 
9.5-15/CM-2 9.1 1-L None 828 19.1 Yes No No 
  1-R None 572 16.1 Yes No No 
 9.2 2-L None 550 14.8 Yes No No 
  2-R None 390 13.2 Yes No No 
Average 9.2 --- --- 585 15.8 --- --- --- 
9.5-15/CM-3 7.0 1-L 7,000 8782 22.2 Yes No No 
  1-R 9,000 12,020 23.2 Yes No No 
 7.3 2-L None 20 k 9.7 No No No 
  2-R None 20 k 10.0 No No No 
Average 7.2 --- 14,000 15,200 16.3 --- --- --- 
9.5-15/CM-4a 7.4 1-L None 20 k 5.8 No No No 
  1-R None 20 k 3.6 No No No 
 4.8 2-L None 20 k 7.9 No No No 
  2-R 5,500 6978 21.0 Yes No No 
Average 6.1 --- 16,375 16745 9.6 --- --- --- 
9.5-15/CM-4b 10.7 1-L 2,000 2,214 23.8 Yes No Yes 
  1-R 4,500 5,490 22.0 Yes Yes Yes 
 10.7 --- 3,250 3,852 22.9 --- --- --- 
9.5-15/CM-4c 10.7 1-L 10,000 11,842 23.0 Yes No Yes 
  1-R None 20 k 8.7 Yes No No 
Average 10.7 --- 15,000 15,921 15.9 --- --- --- 
Note:  When no SIP was observed, a value of 20,000 passes was used to calculate the 

average SIP. 
a)  Specimen air voids correlated to AASHTO T 331. 

 
 
 
Table 7.13 Proposed PURWheel Wet Protocol Mixture Classification System 
 
Performance Classification  Average SIP 
1  <5,000 passes 
2  5,000 to 9,999 passes 
3  10,000 to 14,999 passes 
4  15,000 to 20,000 passes 
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7.3 Highway Surface 25 and 50% RAP Mixture Results 

 
 

7.3.1 Cantabro Durability Data 

Cantabro testing (aged and un-aged) was performed as described in Section 4.2.4.  

The results are summarized in Table 7.14.  Mass loss was 11.9 to 13.2% for the 25% 

RAP mixtures.  These results were similar to or only slightly higher than the range of 

mass loss observed for control mixtures of 12% or less.  Mass loss was 14.1 to 16.7% for 

the 50% RAP mixtures.  These results were slightly higher than results for the 25% RAP 

mixtures and somewhat higher than results observed for control mixtures. 

Increasing the amount of R-1 RAP from 25 to 50% resulted in a ML increase of 

about 5% for both Ndes specimens and for target density specimens.  The same increase in 

R-2 RAP only resulted in a ML increase of about 1% for Ndes specimens and actually 

resulted in decreased ML of about 2% for the target density specimens.  Cantabro testing 

of 100% RAP mixtures indicated R-1 would be more susceptible to mass loss than R-2 

when incorporated into a recycled mixture.  This was observed in the 50% RAP mixtures 

but not in the 25% RAP mixtures.  The difference in average specimen air voids between 

25% RAP mixtures might account for the observed difference in mass loss since the 

difference in mass loss between the 25% RAP mixtures was only 1.3%. 

Aged Cantabaro test results are summarized in Table 7.15.  Mixtures with R-1 

RAP and R-30 aging were utilized based on previous test results that they produced 

higher mass loss.  With 25% RAP the aged specimens had an increase in mass loss 

compared to the un-aged specimens of about 6%, which is slightly higher than the 2 to 
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4% increase observed for control mixtures after aging.  For the 50% RAP mixture the 

mass loss after R-30 aging was about 9% higher than ML for the un-aged mixture. 

 
 
Table 7.14 Cantabro Data for Un-Aged 25 and 50% Recycled Mixtures 
 

  Compacted to Ndes  Compacted to Target Air Voids 
Mixture ID n Avg. Air Voids (%) Avg. ML (%)  Avg. Air Voids (%) Avg. ML (%) 
9.5-25/RM-1 3 4.6 11.9  3.8 11.4 
9.5-25/RM-2 3 5.2 13.2  3.9 11.7 
9.5-50/RM-1 3 5.2 16.7  3.8 16.5 
9.5-50/RM-2 3 5.2 14.1  4.0 9.8 

 
 
 

Table 7.15 Cantabro Data for Aged 25 and 50% Recycled Mixtures with R-1 RAP 
 
Mixture ID Aging Protocol n Avg. Air Voids (%) Avg. ML (%) 
9.5-25/RM-1 R-30 3 4.7 17.8 
9.5-50/RM-1 R-30 3 5.7 25.6 

 
 
 

7.3.2 BBR and IDT Data 

BBR testing of recycled mixtures was performed at four test temperatures as per 

Section 3.5.3.  Figure 7.18 presents stiffness isotherms of the BBR data at -24 C.  Dashed 

lines in Figure 7.18 are the upper and lower stiffness isotherms for control mixtures 

tested in Chapter 5 at -24 C.  Stiffness isotherms for all four mixtures with 25 or 50% 

RAP fall within or overlap the band of control mixture (CM) stiffness. Figure 7.19 

presents data at -18 C; stiffness isotherms for all four mixtures with 25 or 50% RAP 

again fall within or overlap the band of control mixture stiffness.  In general, the mixes 

tested at -18 C are less stiff than when tested at -24 C which is a reasonable result.  In 

general, at -24 C and -18 C the mixtures with 50% RAP are slightly stiffer than or of 

similar stiffness to the mixtures with 25% of the same RAP source. 
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Figures 7.20 and 7.21 present stiffness isotherms of 25 and 50 % RAP mixes 

alongside control mixture bands collected at -12 C and -06 C, respectively.  All 25 and 

50% RAP mixes at -12 C and -06 C are of similar or higher stiffness than the upper band 

of control mixture stiffness.  In general, the mixes tested at -06 C are less stiff than when 

tested at -12 C which is a reasonable result.  In general, at -12 C and -06 C the mixes with 

50% RAP are slightly stiffer than or of similar stiffness to the mixes with 25% of the 

same RAP source.  Tensile strength testing at low temperatures was performed for 25 and 

50% RAP mixtures.  Properties were determined according to Section 4.2.2 and results 

are presented in Table 7.16. 

 
 

Table 7.16 Low Temperature IDT Results for 25 and 50% RAP Mixtures 
 
 Test Temperature and Average Tensile Strength (kPa) 
Mixture ID -06 C -12 C -18 C -24 C  
9.5-25/RM-1 4019 4735 3950 3886  
9.5-25/RM-2 4424 5099 2906 3063  
9.5-50/RM-1 3189 3538 3310 2904  
9.5-50/RM-2 4609 3925 3055 2986  
Note:  Each value is average of two test results. 
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Figure 7.18 BBR Stiffness Data for 25 and 50% RAP Mixtures at -24 C 

 
 
 

 
 

Figure 7.19 BBR Stiffness Data for 25 and 50% RAP Mixtures at -18 C 
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Figure 7.20 BBR Stiffness Data for 25 and 50% RAP Mixtures at -12 C 
 
 
 

 
 
Figure 7.21 BBR Stiffness Data for 25 and 50% RAP Mixtures at -06 C 
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Thermal cracking analysis was performed with the data for 25 and 50% RAP 

mixtures as described in Section 7.2.2.3.  Table 7.17 presents details of the stiffness 

master curve fitting process.  The Arrhenius equation R2 values are very reasonable and 

the RMS error for the master curve fitting process is also very reasonable. 

Figure 7.22a presents the final results for 25% RAP mixtures.  For 9.5-25/RM-1, 

the TAP method has estimated Tcr of -27.4 C and the intersection of stress and strength is 

estimated to be -28 C.  For 9.5-25/RM-2, the TAP method has estimated Tcr of -28.2 C 

and stress and strength intersection is approximately -24 C. 

Figure 7.23b presents the final results for 50% RAP mixtures.  For 9.5-50/RM-1, 

the TAP method has estimated Tcr of -28.0 C and the intersection of stress and strength is 

approximately -22 C.  For 9.5-50/RM-2, the TAP method has estimated Tcr of -29.5 C and 

stress and strength intersection is approximately -22 C. 

 
 
Table 7.17 Stiffness Modulus Master Curve Parameters 
 

Mixture Arrhenius Equation CAS Master Curve 
ID Tref (C) a1 (---) R2 Error (%)a Sglassy (GPa) λ (sec) β (---) 
9.5-25/RM-1 -06 19133.6 0.94 0.54 28.0 594.83x103 0.182443 
9.5-25/RM-2 -06 22072.7 0.91 1.2 37.0 17.446x106 0.135558 
9.5-50/RM-1 -11.6 27190.6 0.93 2.3 40.9 10.000x109 0.108532 
9.5-50/RM-2 -06 15457.0 0.99 0.47 41.1 142.51x106 0.127632 
a)  Root mean square (RMS) error of the three parameter curve fitting. 
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        a)  9.5-25/RM-1 and 9.5-25/RM-2          b)  9.5-50/RM-1 and 9.5-50/RM-2  

 
Figure 7.22 Tcr Analysis for Highway 25 and 50% RAP Mixture Data 

 
 
 

7.3.3 Rutting Data 

 
 

7.3.3.1 APA 

For 25 and 50% RAP control mixtures APA testing was performed on SGC 

compacted specimens as described in Section 4.2.6.  Specimens with 7 and 10% nominal 

air voids were tested; Table 7.18 summarizes the data.  Linear regression equations were 

fitted to the data between 2,000 and 8,000 passes and power law regression equations 

were fitted to the full range of test data. The regression equations generally provided a 

good fit of the data as evidenced by R2 values of 0.94 or greater.  Total rut depths for 

25% RAP mixtures were less than 3 mm for nominal 7% air void specimens, and were 

less than 5 mm for nominal 10% air void specimens.  APA rutting performance of the 

25% RAP mixtures was comparable to that of 85 gyration control mixtures, yet they were 

designed as 65 gyration mixtures. 
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The total rut depth for the 50% R-1 mixture was 1.9 mm for nominal 7% air voids 

and 2.9 mm for nominal 10% air voids.  For 50% R-2 the total rut depths were on the 

order of 4 mm for 7% air void specimens and less than 6 mm for 10% air void specimens.  

The R-2 RAP source had slightly higher rutting than the R-1 RAP source.  Overall, APA 

rutting performance of the 25 and 50% RAP mixtures was good and comparable to 85 

gyration control mixtures, which is the best reference for rut resistance. 

 
 

Table 7.18 APA Results for 25 and 50% RAP Mixtures 
 

Mixture Avg. Rut Depth (mm) Linear Rutting Ratea Power Lawb

ID Va (%) 2000 8000 Slope (10-6) Intercept R2 a b R2

9.5-25/RM-1 6.9 1.3 2.4 180 1.04 0.99 0.047 0.439 0.99 
 9.5 3.3 5.0 266 3.04 0.94 0.071 0.488 0.95 
9.5-25/RM-2 6.9 1.5 3.0 251 1.03 1.00 0.045 0.462 0.99 
 9.9 3.3 5.0 268 2.96 0.97 0.093 0.454 0.94 
9.5-50/RM-1 7.0 1.2 1.9 107 1.08 0.99 0.083 0.352 0.97 
 9.9 1.5 2.9 212 1.21 0.98 0.056 0.438 1.00 
9.5-50/RM-2 7.0 2.2 4.3 319 1.80 0.98 0.036 0.537 0.99 
 10.0 3.3 5.6 369 2.86 0.96 0.054 0.527 0.97 
a)  Linear rutting rate regression analysis is based on averaged data between 2000 and 

8000 cycles. 
b)  Power law regression analysis is based on averaged data and Eq. 2.4. 

 
 
 

7.3.3.2 PURWheel Dry Protocol 

For 25 and 50% RAP mixtures PURWheel dry rut testing was performed on LAC 

compacted specimens as described in Section 4.2.7.  Raw data is located in Tables A.17, 

A.19, A.21, and A.23.  Table 7.19 summarizes the data.  Linear regression equations 

were fitted to the data between 2,000 and 20,000 passes and power law regression 

equations were fitted to the full range of test data.  The regression equations generally 

provided a good fit of the data for the data as evidenced by the R2 values of 0.85 or 

greater. 
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Average total rut depth for mixture 9.5-25/RM-1 was about 10 mm, and average 

total rut depth for mixture 9.5-25/RM-2 was about 8 mm.  Considering variability 

between specimens, RAP sources R-1 and R-2 had similar rut levels when they comprised 

25% of the total mixture.  For 25% RAP mixtures average total rut depths were higher 

than those observed for polymer-modified control mixtures and somewhat higher than 

those observed for the field mixed version of control mixture 4 with PG 67-22.  Total rut 

depths for 25% RAP mixes were less than those for 50 gyration control mixture. 

 
 

Table 7.19 PURWheel Dry Test Results for 25 and 50% RAP Mixtures 
 
   Rut Depth Linear Rutting Rateb Power Lawc

Mixture ID Va (%)a Rep Pass mm Slope (10-6) Intercept R2 a b R2

9.5-25/RM-1 10.3 1-L 20 k 14.3 600 3.11 1.00 0.035 0.605 0.97 
  1-R 20 k 9.1 400 2.34 0.99 0.030 0.576 0.97 
 9.0 2-L 20 k 8.5 300 2.88 0.99 0.079 0.473 0.95 
  2-R 20 k 6.0 200 2.05 0.99 0.043 0.500 0.96 
Average 9.7 --- 20 k 9.5 375 2.60 --- 0.047 0.539 --- 
9.5-25/RM-2 7.0 1-L 20 k 15.7 600 4.31 0.99 0.069 0.546 0.96 
  1-R 20 k 7.6 200 3.36 0.98 0.173 0.381 0.99 
 10.4 2-L 20 k 5.4 200 2.45 0.97 0.102 0.403 0.92 
  2-R 20 k 11.0 400 4.45 0.98 0.152 0.434 0.93 
Average 8.7 --- 20 k 9.9 700 3.64 --- 0.124 0.441 --- 
9.5-50/RM-1 8.1 1-L 20 k 2.7 60 1.69 0.95 0.135 0.309 0.86 
  1-R 20 k 2.4 50 1.47 0.95 0.138 0.294 0.85 
 8.7 2-L 20 k 3.9 90 2.36 0.90 0.155 0.334 0.87 
  2-R 20 k 2.9 90 1.37 0.92 0.072 0.381 0.92 
Average 8.4 --- 20 k 3.0 72.5 1.72 --- 0.125 0.330 --- 
9.5-50/RM-2 6.4 1-L 20 k 7.6 300 2.78 0.98 0.087 0.452 0.94 
  1-R 20 k 5.5 200 2.22 0.98 0.086 0.419 0.94 
 8.0 2-L 20 k 6.1 200 2.35 0.98 0.074 0.448 0.94 
  2-R 20 k 9.8 300 3.23 0.99 0.086 0.477 0.95 
Average 7.2 --- 20 k 7.3 250 2.65 --- 0.083 0.449 --- 

a)  Specimen air voids correlated to AASHTO T 331. 
b)  Linear rutting rate regression analysis is based on averaged data between 2,000 and 

20,000 passes. 
c)  Power law regression analysis is based on averaged data and Eq. 2.4. 
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For 50% RAP mixtures, rutting was less than was observed for 25% RAP 

mixtures. Average total rut depth for 9.5-50/RM-1 was 3 mm and average total rut depth 

for mixture 9.5-50/RM-2 was about 7 mm.  This result agrees with the higher viscosity 

and PG grade of R-1 RAP asphalt compared to R-2 RAP asphalt which would indicate 

better rutting performance of R-1.  PURWheel dry protocol test results for 50% RAP 

mixtures provided the same ranking of rutting performance as APA results.  Rutting 

performance of the mixture with 50% R-1 RAP was comparably or slightly better than 

that observed for polymer modified control mixtures; rutting performance of the mixture 

with 50% R-2 RAP was similar to that observed for the field mixed version of control 

mixture 4 with PG 67-22.  Total rut depths for 50% RAP mixes were less than those for 

50 gyration control mixture. 

 
 

7.3.4 Moisture Damage Data 

 
 

7.3.4.1 TSR 

For 25 and 50% RAP mixtures TSR testing was performed on SGC compacted 

specimens as described in Section 4.2.5.  The results are summarized in Table 7.20.  All 

mixtures had acceptable TSR results (i.e. >80%).  In general, the 50% RAP mixtures had 

slightly higher tensile strengths than the 25% RAP mixtures.  TSR testing of designed 

100% RAP mixtures indicated that R-2 RAP might be more prone to moisture 

susceptibility than R-1 RAP but that trend is not observed in the 25 and 50% RAP 

mixture TSR data. 
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Table 7.20 TSR Results for 25 and 50% RAP Mixtures 
 

Mixture Conditioned Set  Un-Conditioned Set  
ID Avg. Va (%) Sat (%) St (kPa)  Avg. Va (%) St (kPa) TSR (%) 
9.5-25/RM-1 7.5 59 1407  7.4 1447 97 
9.5-25/RM-2 7.9 64 1571  7.8 1614 97 
9.5-50/RM-1 7.3 64 2053  7.2 2091 98 
9.5-50/RM-2 8.0 62 1798  8.0 1942 93 

 
 
 

7.3.4.2 PURWheel Wet Protocol 

PURWheel wet protocol testing was performed as described in Section 4.2.7 for 

all 25 and 50% RAP mixtures.  The data is located in Tables A.18, A.20, A.22, and A.24.  

Analysis of the data was performed in the manner described in Section 7.2.4.2.  Figure 

7.23 presents results of wet and dry protocol PURWheel testing of mixture 9.5-25/RM-1 

containing 25% R-1 RAP.  All four PURWheel wet protocol specimens exhibited 

evidence of moisture damage and early test termination. 

Figure 7.24 presents PURWheel wet and dry protocol results for mixture 9.5-

25/RM-2 containing 25% R-2 RAP.  Three of the four wet protocol specimens exhibited 

evidence of moisture damage.  The specimen that did not exhibit moisture damage had 

rutting performance similar to that of dry specimens. 

Figure 7.25 presents wet and dry protocol PURWheel results for mixture 9.5-

50/RM-1 containing 50% R-1 RAP.  Three of the four wet protocol specimens exhibited 

evidence of moisture damage.  The wet protocol specimen that did not exhibit evidence 

of moisture damage performed similarly to specimens tested according to PURWheel dry 

protocol. 

Figure 7.26 presents wet and dry PURWheel test results for mixture 9.5-50/RM-2 

containing 50% R-2 RAP.  Three of the four wet test specimens exhibited evidence of 
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moisture damage.  The wet test specimen that did not exhibit definitive evidence of 

moisture damage did have an increased rate of rutting compared to dry test specimens in 

the second half of the test; a mechanical malfunction caused premature termination of the 

test at 18,000 passes for the wet test specimen without definitive evidence of moisture 

damage. 

 
 

 
 

Figure 7.23 PURWheel Test Results for Mixture 9.5-25/RM-1 
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Figure 7.24 PURWheel Test Results for Mixture 9.5-25/RM-2 
 
 
 

 
 

Figure 7.25 PURWheel Test Results for Mixture 9.5-50/RM-1 
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Figure 7.26 PURWheel Test Results for Mixture 9.5-50/RM-2 
 
 
 

Table 7.21 has results of 25 and 50% RAP mixes in the PURWheel wet protocol 

test.  An average SIP was calculated for each mix; when no SIP was observed for a wet 
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Table 7.21 Summary of PURWheel Wet Test Results for 25 and 50% RAP Mixtures 
 

    Termination  Visual Assessment 

Mixture ID Va (%)a Rep SIP Pass (mm) Bare Agg. Loose Agg. Crack 
9.5-25/RM-1 9.5 1-L 8,500 11,232 21.2 Yes No Yes 
  1-R 14,000 16,022 23.7 Yes No No 
 9.1 2-L 15,500 16,766 27.4 Yes No No 
  2-R 16,000 18,452 25.0 Yes No No 
Average 9.3 --- 13,500 15,618 24.3 --- --- --- 
9.5-25/RM-2 9.1 1-L 3,500 4,660 21.5 Yes No Yes 
  1-R 4,500 6,066 22.0 Yes No No 
 8.9 2-L 4,000 6,342 24.0 Yes No No 
  2-R None 20 k 13.6 Yes No No 
Average 9.0 --- 8,000 9,267 20.3 --- --- --- 
9.5-50/RM-1 8.2 1-L 11,500 14,690 23.7 Yes No Yes 
  1-R 11,500 18,360 23.0 Yes No No 
 8.3 2-L 8,500 10,238 24.6 Yes No Yes 
  2-R None 20 k 4.3 Yes No No 
Average 8.3 --- 12,875 15,822 18.9 --- --- --- 
9.5-50/RM-2 6.4 1-L 11,000 14,406 24.1 Yes No No 
  1-R 7,500 9,526 18.4 Yes No No 
 8.0 2-L 7,500 8,774 24.0 Yes Yes Yes 
  2-R None 18,012b 9.2 Yes No No 
Average 7.4 --- 11,500 12,680 18.9 --- --- --- 
Note:  When no SIP was observed, a value of 20,000 passes was used to calculate the 

average SIP. 
a)   Air voids correlated to AASHTO T 331 values. 
b) Premature termination caused by mechanical malfunction; not by excessive 

specimen deformation. 
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CHAPTER 8 
 

HIGHWAY BASE MIXTURES 
 
 

8.1 Overview of Highway Base Mixtures 

This chapter presents results from investigation of highway base mixtures.  

Properties of all mixtures tested are located in Section 3.5.4.  Details of the experimental 

program are located in Section 4.3.4.  The results are organized in two broad categories, 

15% RAP controls (Section 8.2) and 50 and 75% RAP recycled mixtures (Section 8.3).  

Subsections organize the data by mixture performance type and analysis category.  

Discussion and interpretation of all the results is provided in Chapter 9. 

 
 

8.2 Control Highway Base Mixture Results 

 
 

8.2.1 Cantabro Durability Data 

 
 

8.2.1.1 Testing of Random QA Specimens 

QA specimens of thirty-three mixtures (12.5 mm and 19.0 mm) were tested for 

durability (Table 8.1).  For 12.5 mm NMAS mixtures, mass loss was observed to 

generally vary from 5 to 13%; however there is one mixture with mass loss of about 16%.  

For 19.0 mm NMAS mixtures, mass loss was somewhat higher than for the smaller 

aggregate gradation and ranged from approximately 7 to 15% with one mixture having 
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16.5% mass loss.  Figure 8.1 plots the mass loss data in terms of mixture air voids.  A 

slight trend of increasing mass loss with increasing air voids is observed in the 12.5 mm 

NMAS data; however the trend is not observed in 19.0 mm NMAS data. 

 
 
Table 8.1 Mass Loss Results for Control Mixtures 5 to 37 
 

Mixture ID Pb (%) n Avg. Va (%) Avg. ML (%) 
12.5-12/CM-5 5.2 2 3.3 6.7 
12.5-15/CM-6 5.5 2 2.9 4.9 
12.5-20/CM-7 3.7 2 3.8 12.7 
12.5-14/CM-8 5.2 2 3.6 7.8 
12.5-15/CM-9 5.2 8 4.0 10.9 
12.5-15/CM-10 5.7 2 3.4 12.9 
12.5-15/CM-11 5.0 10 4.1 10.3 
12.5-12/CM-12 5.2 4 2.8 6.7 
12.5-15/CM-13 5.3 2 3.7 7.2 
12.5-15/CM-14 5.4 4 4.3 10.7 
12.5-15/CM-15 4.7 2 1.9 5.8 
12.5-30/CM-16 5.6 2 1.7 8.4 
12.5-12/CM-17 5.0 4 3.6 12.8 
12.5-15/CM-18 5.7 2 4.1 5.9 
12.5-15/CM-19 6.0 2 0.6 5.0 
12.5-15/CM-20 5.2 4 5.5 16.1 
19.0-15/CM-21 4.7 2 3.9 9.8 
19.0-15/CM-22 4.8 2 5.2 12.3 
19.0-20/CM-23 4.6 2 1.4 7.7 
19.0-20/CM-24 4.9 2 3.8 12.8 
19.0-20/CM-25 5.7 2 1.3 9.4 
19.0-12/CM-26 4.4 2 3.2 16.5 
19.0-20/CM-27 4.5 2 2.2 9.7 
19.0-18/CM-28 5.1 2 1.7 12.4 
19.0-25/CM-29 3.9 6 3.8 9.2 
19.0-15/CM-30 4.9 2 2.4 10.9 
19.0-30/CM-31 4.6 4 5.4 9.2 
19.0-15/CM-32 4.9 4 3.2 8.2 
19.0-10/CM-33 5.7 2 4.6 14.7 
19.0-20/CM-34 4.4 2 5.4 14.3 
19.0-15/CM-35 4.4 2 5.4 14.1 
19.0-20/CM-36 5.3 2 5.1 8.7 
19.0-15/CM-37 4.8 2 5.0 6.7 
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       a)  12.5 mm NMAS         b)  19.0 mm NMAS 

 
Figure 8.1 Mass Loss Results for Mississippi Mixtures 
 

 
 

8.2.1.2 Testing of Specific Control Mixtures 

Mass loss results for the specific control highway base mixtures are provided in 

Table 8.2.  Mass loss is seen to range from 11.3 to 14.8% for the 12.5 mm NMAS 

mixtures.  Similar to the random QA specimens, the mass loss of the 19.0 mm NMAS 

mixture is somewhat higher at 15.5%. 

 
 
Table 8.2 Mass Loss Results for Control Base Mixtures 1 to 4 
 

Specimen ID Rep Va (%) ML (%) 
12.5-15/CM-1 1 5.6 9.9 
 2 5.0 11.9 
 3 4.6 12.7 
 Avg. 5.1 11.5 
12.5-15/CM-2 1 5.3 11.5 
 2 5.2 10.7 
 3 5.2 11.6 
 Avg. 5.2 11.3 
12.5-15/CM-3 1 5.3 15.5 
 2 4.9 15.3 
 3 4.9 13.7 
 Avg. 5.0 14.8 
19.0-15/CM-4 1 4.0 14.3 
 2 4.8 14.9 
 3 4.7 17.3 
 Avg. 4.5 15.5 
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8.2.2 Tensile Strength Data 

Tensile strength results for the control highway base mixtures are provided in 

Table 8.3.  The 19.0 mm NMAS mixture (19.0-15/CM-4) had the highest St and the 85 

design gyration 12.5 mm NMAS mixture (12.5-15/CM-3) had the lowest St.  Overall, 

tensile strength of the control mixtures ranged from approximately 1100 to 2000 kPa. 

 
 
Table 8.3 Tensile Strength Results for Control Base Mixtures 
 

Specimen ID Rep Va (%) St (kPa) 
12.5-15/CM-1 1 6.6 1277 
 2 5.5 1341 
 Avg. 6.0 1309 
12.5-15/CM-2 1 4.5 1869 
 2 5.1 1917 
 Avg. 4.8 1893 
12.5-15/CM-3 1 5.8 1119 
 2 5.0 1147 
 Avg. 5.4 1133 
19.0-15/CM-4 1 3.2 1843 
 2 3.3 2028 
 Avg. 3.3 1935 

 
 
 

8.2.3 Rutting Data 

 
 

8.2.3.1 APA 

APA rut testing was performed on control highway base mixtures at two air void 

levels (Table 8.4).  Regression equations were fitted to the data as was done in Chapter 7; 

the linear regression of data between 2,000 and 8,000 passes generally provided very 

good fit of the data as evidenced by the high R2 values.  Power law regression of the data 

also generally provided very reasonable fit of the data. 
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For nominal 7% air voids, the three 12.5 mm NMAS control mixtures ranked as 

expected in terms of total rut depths, with the 50 design gyration mixture rutting the most 

(7.9 mm) and the 85 gyration mixture rutting least (3.4 mm).  The polymer-modified 19.0 

mm NMAS mixture also had low rutting with 7% nominal air void specimens (4.0 mm). 

For nominal 10% air voids, the 50 gyration 12.5 mm NMAS mixture had the 

overall highest total depth as expected (10.2 mm).  However, the 65 and 85 gyration 

mixes had nearly the same total rut depths (lowest rut depth was 6.1 mm).  The 19.0 mm 

NMAS mixture did not perform as well at the higher air void level (total rut depth of 8.4 

mm); this may potentially be due to difficulty achieving adequate aggregate interlock. 

 
 
Table 8.4 APA Results for Control Base Mixtures 
 

Mixture Avg. Rut Depth (mm) Linear Rutting Ratea Power Lawb

ID Va (%) 2000 8000 Slope (10-6) Intercept R2 a b R2

12.5-15/CM-1 7.3 5.1 7.9 456 4.42 0.99 0.187 0.424 0.94 
 9.7 6.9 10.2 537 6.14 0.98 0.413 0.363 0.94 
12.5-15/CM-2 7.2 3.7 5.7 322 3.18 0.99 0.145 0.413 0.94 
 9.9 4.5 6.1 256 4.20 0.98 0.301 0.344 0.89 
12.5-15/CM-3c 6.9 1.4 3.4 --- --- --- --- --- --- 
 9.9 3.7 6.3 --- --- --- --- --- --- 
19.0-15/CM-4 7.0 2.5 4.0 225 2.29 0.96 0.080 0.445 0.97 
 10.1 6.0 8.4 384 5.48 0.98 0.323 0.372 0.90 
a)  Linear rutting rate regression analysis is based on averaged data between 2,000 and 

8,000 cycles. 
b)  Power law regression analysis is based on averaged data and Eq. 2.4. 
c)  Regression analysis data not available. 

 
 
 

8.2.3.2 PURWheel Dry Protocol 

PURWheel dry protocol testing was performed on control mixtures one to four.  

Raw data is located in Tables A.25, A.27, A.29 and A.32.  Table 8.5 summarizes 

PURWheel dry test results for control mixtures. 
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For 12.5 mm NMAS mixtures, the mixtures rank as expected and in the same 

order as APA results.  All specimens of the 50 gyration mixture (12.5-15/CM-1) 

terminated before 20,000 passes due to excessive rutting; average termination was about 

8,300 passes.  The 65 and 85 gyration mixtures performed similarly, with the 85 gyration 

mixture having slightly lower average total rutting.  The 19.0 mm NMAS mixture ranked 

the same as the high target air voids APA data, namely much better than CM-1 but not 

quite as good as CM-2 or CM-3.  Overall, control mixtures two to four performed well in 

PURWheel dry testing with total rut depths on the order of 6 to 8 mm. 

 
 
Table 8.5 PURWheel Dry Test Results for Control Base Mixtures 
 
   Rut Depth  Linear Rutting Rateb Power Lawc

Mixture ID Va (%)a Rep Pass mm Slope (10-6) Intercept R2 a b R2

12.5-15/CM-1 7.0 1-L 8,084 21.9 2600 0.45 0.99 0.012 0.829 0.99 
  1-R 7,760 18.5 2200 1.08 0.99 0.019 0.758 0.99 
 7.1 2-L 6,618 23.4 3500 0.00 0.99 0.008 0.897 0.96 
  2-R 10,982 18.5 1500 2.26 0.99 0.018 0.744 0.99 
Average 7.1 --- 8,361 20.6 2450 0.95 --- 0.014 0.807 --- 
12.5-15/CM-2 5.9 1-L 20 k 7.1 200 2.90 0.98 0.102 0.431 0.94 
  1-R 20 k 5.4 200 2.36 0.97 0.126 0.378 0.96 
Average 5.9 --- 20 k 6.3 200 2.63 --- 0.114 0.405 --- 
12.5-15/CM-3 6.8 1-L 20 k 7.0 200 3.42 0.97 0.212 0.354 0.89 
  1-R 20 k 3.7 100 1.63 0.96 0.075 0.390 0.92 
 7.1 2-L 20 k 6.7 200 2.33 0.99 0.060 0.475 0.95 
  2-R 20 k 6.1 200 2.12 0.99 0.088 0.423 0.93 
Average 7.0 --- 20 k 5.9 175 2.38 --- 0.109 0.411 --- 
19.0-15/CM-4 6.3 1-L 20 k 11.6 400 3.53 0.99 0.067 0.519 0.96 
  1-R 20 k 7.0 200 3.42 0.97 0.183 0.371 0.91 
 6.8 2-L 20 k 7.8 300 3.01 0.98 0.089 0.454 0.94 
  2-R 20 k 5.3 200 2.26 0.97 0.077 0.429 0.94 
Average 6.6 --- 20 k 7.9 275 3.06 --- 0.104 0.443 --- 

a)  Specimen air voids correlated to AASHTO T 331. 
b)  Linear rutting rate regression analysis is based on averaged data between 2000 and 

20,000 passes. 
c)  Power law regression analysis is based on averaged data and Eq. 2.4. 
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8.2.4 Moisture Damage Data 

 
 

8.2.4.1 TSR 

TSR data for control base mixtures was taken from MDOT mix designs.  TSR 

values for control mixtures CM-1 to CM-4 were 101.0, 98.1, 98.1 and 92,9% 

respectively.  All four mixtures performed adequately with TSR values greater than 90% 

indicating that moisture damage would likely not be a major concern for these mixtures 

according to this test method. 

 
 

8.2.4.2 PURWheel Wet Protocol 

PURWheel wet protocol testing was performed on control mixtures one to four.  

Raw data is found in Tables A.26, A.28, A.30, A.31 and A.33.  Table 8.6 summarizes the 

PURWheel wet test results for control mixtures. 

Figure 8.2 presents all PURWheel test data (both wet and dry) for mixture 12.5-

15/CM-1.  The wet tests failed slightly sooner than the dry tests with gradual stripping 

inflection points (SIPs).  No loose aggregate or cracking was observed in the visual 

assessment (Table 8.6). 

Figure 8.3 presents all PURWheel test data for mixture 12.5-15/CM-2.  The left 

wet test specimen immediately began to rut at a faster rate than the dry test and failed 

relatively quickly, while the right specimen rutted similarly to the dry test for more than 

half the test before exhibiting moisture damage including cracks and loose aggregate. 

Figure 8.4 presents all PURWheel test data for mixture 12.5-15/CM-3.  An 

additional wet PURWheel test was performed of this mixture (total 3 wet tests and 2 dry 
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tests).  Two of the wet test replicates did not exhibit any evidence of moisture damage 

and their rutting performance was indistinguishable from the dry tests.  The other four 

wet test specimens all exhibited evidence of moisture damage in the data but visually 

exhibited only bare polished aggregate and minimal evidence of moisture damage. 

Figure 8.5 presents all PURWheel test data for mixture 19.0-15/CM-4.  Three of 

the four wet test specimens exhibited evidence of moisture damage in the rut data.  

Minimal visual evidence of moisture damage was present. 

 
 

 
 
Figure 8.2 PURWheel Test Results for Mixture 12.5-15/CM-1 
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Figure 8.3 PURWheel Test Results for Mixture 12.5-15/CM-2 

 
 
 

 
 
Figure 8.4 PURWheel Test Results for Mixture 12.5-15/CM-3 
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Figure 8.5 PURWheel Test Results for Mixture 19.0-15/CM-4 

 
 
 

Table 8.6 Summary of PURWheel Wet Test Results for Control Base Mixtures 
 

    Failure  Visual Assessment 
Mixture ID Va (%)a Rep SIP Pass (mm) Bare Agg. Loose Agg. Crack 
12.5-15/CM-1 6.6 1-L 4,000 5,018 24.7 Yes No No 
  1-R 5,000 7,046 23.6 Yes No No 
 6.6 2-L 3,500 4,294 22.3 Yes No No 
  2-R 4,000 4,560 18.8 Yes No No 
Average 6.6 --- 4,125 5,230 22.4 --- --- --- 
12.5-15/CM-2 10.9 1-L 3,600 4,476 18.0 Yes No No 
  1-R 16,500 17,816 20.4 Yes Yes Yes 
Average 10.9 --- 10,050 11,146 19.2 --- --- --- 
12.5-15/CM-3 6.4 1-L 9,500 10,992 23.5 Yes No No 
  1-R None 20 k 4.0 Yes No No 
 6.2 2-L 5,000 6,594 21.6 Yes No No 
  2-R 14,000 15,976 21.3 Yes No Yes 
 7.8 3-L 8,500 10,474 28.1 Yes No Yes 
  3-R None 20 k 6.1 Yes No No 
Average 6.8 --- 12,833 14,006 17.4 --- --- --- 
19.0-15/CM-4 9.4 1-L 4,500 5,920 21.5 Yes No No 
  1-R ---b 6,854 20.5 Yes No No 
 5.1 2-L None 20 k 13.1 Yes No No 
  2-R 12,000 13,426 23.0 Yes No Yes 
Average 7.3 --- 12,167 11,550 19.5 --- --- --- 
Note:  When no SIP was observed, 20,000 passes was used to calculate an average SIP. 
a)  Specimen air voids correlated to AASHTO T 331. 
b)  Specimen terminated prematurely but a SIP could not be determined. 
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8.3 Highway Base 50 and 75% RAP Mixture Results 

 
 
8.3.1 Volumetric Experiment 

Results of the designed experiment to investigate effects of RAP source, RAP 

content and Sasobit® dosage rate on volumetric properties are given in Table 8.7.  The 

most visible result was Sasobit® dosage rate had almost no effect on design total asphalt 

content for these high RAP content mixtures.  Interestingly, the total asphalt contents for 

a particular RAP source did not change much if at all between 50 and 75% RAP contents; 

this may be due to the differences in gradation necessitated by the very high RAP 

contents.  However for a given RAP content, the R-1 RAP source had noticeably higher 

total asphalt contents than either other RAP source; the difference is about 1%.  This 

result coincides with the results presented in Chapter 5 concerning differences in 

effective RAP asphalt contents for different RAP sources at warm mix temperatures. 

 
 
Table 8.7 Results of Highway Base Mixtures Volumetric Experiment 
 

RAP RAP Sasobit® PAC Pb(V) St

Content Source Content (%) (%) (%) (kPa) 
50% R-1 1.0 7.3 4.6 1922 
  1.5 7.3 4.6 1947 
 R-2 1.0 6.1 3.3 2116 
  1.5 6.2 3.4 2167 
 R-3 1.0 6.3 3.8 1942 
  1.5 6.4 3.9 1960 
75% R-1 1.0 7.3 3.3 2535 
  1.5 7.2 3.1 2409 
 R-2 1.0 6.1 1.9 2845 
  1.5 6.1 1.9 2750 
 R-3 1.0 6.2 2.5 2138 
  1.5 6.2 2.5 2493 
Note:  All mixtures designed with 50 gyrations compactive effort. 
   Mixing and compaction temperatures were both 116 C. 
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8.3.2 Cantabro Durability Data 

Durability results for the mixtures are presented in Table 8.8.  50% RAP mixtures 

had lower mass loss than 75% RAP mixtures and similar levels of mass loss to the upper 

end of the range observed for control mixtures.  75% RAP mixtures had mass loss 

slightly above the range observed for control mixtures but not dramatically so. 

The R-1 RAP source outperforms the R-2 RAP source in both 50 and 75% RAP 

mixtures.  This is an interesting result since the R-1 RAP source contains stiffer asphalt 

than the R-2 source and had higher mass loss in 100% RAP testing.  The difference in 

performance is most likely due to the much higher amount of virgin asphalt in the 

mixtures made with R-1 RAP as seen in Table 8.7. 

 
 
Table 8.8 Mass Loss Results for 50 and 75% RAP Recycled Mixtures 
 

Specimen ID Rep Va (%) ML (%) 
12.5-50/RM-1 1 3.9 14.8 
 2 4.6 12.2 
 3 4.3 13.2 
 Avg. 4.3 13.4 
12.5-50/RM-2 1 4.6 14.8 
 2 4.9 14.7 
 3 4.8 17.9 
 Avg. 4.7 15.8 
12.5-75/RM-1 1 3.8 18.6 
 2 3.7 19.2 
 3 3.2 16.7 
 Avg. 3.5 18.1 
12.5-75/RM-2 1 4.8 21.4 
 2 4.6 19.9 
 3 4.6 22.9 
 Avg. 4.7 21.4 
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8.3.3 Tensile Strength Data 

Indirect tensile strength of the 50 and 75% RAP mixtures was given in Table 8.7.  

The results were generally similar to those observed for Cantabro testing.  50% RAP 

mixtures had lower tensile strengths than 75% RAP mixtures (i.e. less brittle) and were 

near the upper end of tensile strengths observed for control mixtures.  75% RAP mixtures 

had tensile strengths slightly above that of control mixtures.  Mixtures with R-1 RAP had 

lower tensile strengths than those with R-2 RAP. 

 
 

8.3.4 Rutting Data 

 
 

8.3.4.1 APA 

Results of APA rut testing on the 50 and 75% RAP mixtures at two target air void 

levels are given in Table 8.9.  Total rut depths were generally very small for all mixtures 

and comparable to or better than the best performing control mixtures.  At low voids, rut 

depths were 4 mm or less and at 10% target voids rutting was about 5 mm or less.  

 
 
Table 8.9 APA Results for 50 and 75% RAP Recycled Mixtures 
 

Mixture Avg. Rut Depth (mm) Linear Rutting Ratea Power Lawb

ID Va (%) 2000 8000 Slope (10-6) Intercept R2 a b R2

12.5-50/RM-1 6.1 2.2 3.9 268 1.97 0.94 0.047 0.502 0.99 
 9.0 3.5 5.2 270 3.21 0.95 0.106 0.445 0.95 
12.5-50/RM-2 6.5 1.8 3.5 277 1.31 0.99 0.061 0.448 0.99 
 9.1 2.0 3.6 269 1.56 0.99 0.068 0.442 0.99 
12.5-75/RM-2 6.5 1.0 1.7 107 0.85 0.99 0.086 0.328 0.98 
 9.1 1.2 2.0 112 1.07 0.99 0.070 0.372 0.98 
12.5-75/RM-2 6.8 1.4 2.4 170 1.03 0.98 0.060 0.408 0.98 
 9.2 1.9 3.7 274 1.58 0.99 0.055 0.471 0.99 
a)  Linear rutting rate regression analysis is based on averaged data between 2,000 and 

8,000 cycles. 
b)  Power law regression analysis is based on averaged data and Eq. 2.4. 
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8.3.4.2 PURWheel Dry Protocol 

Summary results of PURWheel dry protocol testing on 50 and 75% RAP mixtures 

are presented in Table 8.10.  Raw data is provided in Tables A.34, A.36, A.38 and A.40.  

Mixtures containing R-1 RAP generally rutted more than those containing R-2 RAP.  

This is likely due to the higher virgin asphalt contents in the R-1 mixtures.  Mixtures with 

R-2 RAP had total rut depths comparable to the best performing control mixtures.  

Mixtures with R-1 RAP had much better rut performance than control mixture one but 

not quite as good as the other control mixtures or the mixtures with R-2 RAP. 

 
 
Table 8.10 PURWheel Dry Test Results for 50 and 75% RAP Recycled Mixtures 
 
   Rut Depth  Linear Rutting Rateb Power Lawc

Mixture ID Va (%)a Rep Pass mm Slope (10-6) Intercept R2 a b R2

12.5-50/RM-1 7.6 1-L 20 k 12.0 400 3.83 0.99 0.113 0.466 0.94 
  1-R 20 k 5.7 200 2.28 0.98 0.083 0.426 0.94 
 5.8 2-L 20 k 9.1 300 2.90 0.99 0.069 0.492 0.95 
  2-R 20 k 6.3 200 2.61 0.98 0.085 0.437 0.94 
Average 6.7 --- 20 k 8.3 275 2.91 --- 0.088 0.455 --- 
12.5-50/RM-2 4.3 1-L 20 k 6.5 100 2.93 0.96 0.192 0.343 0.88 
  1-R 20 k 7.3 200 3.50 0.95 0.126 0.415 0.92 
 9.5 2-L 20 k 5.9 200 2.37 0.97 0.070 0.450 0.94 
  2-R 20 k 5.9 200 2.28 0.98 0.087 0.425 0.94 
Average 6.9 --- 20 k 6.4 175 2.77 --- 0.119 0.408 --- 
12.5-75/RM-1 9.5 1-L 20 k 8.1 300 2.25 0.99 0.040 0.535 0.96 
  1-R 20 k 10.4 400 2.94 0.99 0.046 0.550 0.96 
 11.8 2-L 20 k 10.5 400 3.13 0.99 0.058 0.525 0.96 
  2-R 20 k 17.6 700 3.07 0.99 0.041 0.605 0.97 
Average 10.7 --- 20 k 11.7 450 2.85 --- 0.046 0.554 --- 
12.5-75/RM-2 8.1 1-L 20 k 4.3 200 1.79 0.97 0.072 0.418 0.94 
  1-R 20 k 4.9 200 1.93 0.98 0.067 0.434 0.94 
 9.1 2-L 20 k 5.8 200 2.20 0.98 0.052 0.478 0.95 
  2-R 20 k 6.1 200 2.22 0.98 0.056 0.475 0.95 
Average 8.6 --- 20 k 5.3 200 2.03 --- 0.062 0.451 --- 

a)  Specimen air voids correlated to AASHTO T 331. 
b)  Linear rutting rate regression analysis is based on averaged data between 2000 and 

20,000 passes. 
c)  Power law regression analysis is based on averaged data and Eq. 2.4. 
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8.3.5 Moisture Damage Data 

 
 

8.3.5.1 TSR 

Results of TSR moisture damage testing performed for 50 and 75% RAP mixtures 

are provided in Table 8.11.  All the mixtures pass the commonly utilized criterion of TSR 

value of 80% or greater.  The 12.5-50/RM-1 mixture was borderline. 

 
 
Table 8.11 TSR Results for 50 and 75% RAP Recycled Mixtures 
 

Mixture Conditioned Set  Un-Conditioned Set  
ID Avg. Va (%) Sat (%) St (kPa)  Avg. Va (%) St (kPa) TSR (%)
12.5-50/RM-1 6.2 59.6 1629  6.2 2036 80.0 
12.5-50/RM-2 6.1 60.9 2130  6.4 2351 90.6 
12.5-75/RM-1 5.9 58.8 2374  5.9 2361 100.6 
12.5-75/RM-2 7.1 65.9 2091  6.9 2370 88.2 

 
 
 

8.3.5.2 PURWheel Wet Protocol 

PURWheel wet protocol testing was performed for 50 and 75% RAP mixtures.  

The raw data is located in Tables A.35, A.37, A.39 and A.41.  Results of the wet 

PURWheel testing are summarized in Table 8.12.  Figures 8.6 to 8.9 present all 

PURWheel testing (both wet and dry) for 50 and 75% RAP mixtures. 

Figure 8.6 presents PURWheel results for mixture 12.5-50/RM-1.  Three of the 

four wet test replicates exhibited evidence of moisture damage in the rut data; average 

SIP was nearly 9,500 passes.  There was no visual evidence of stripping. 

Figure 8.7 presents PURWheel results for mixture 12.5-50/RM-2.  Three of the 

four wet test replicates exhibited evidence of moisture damage in the rut data and the 
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fourth replicate rutted faster than the dry tests; average SIP was nearly 10,500 passes.  

There was no visual evidence of stripping. 

Figure 8.8 presents PURWheel results for mixture 12.5-75/RM-1.  Three of the 

four wet test replicates exhibited evidence of moisture damage in the rut data; average 

SIP was about 13,500 passes.  There was minimal visual evidence of stripping. 

Figure 8.9 presents PURWheel results for mixture 12.5-75/RM-2.  Two of the 

four wet test replicates exhibited evidence of moisture damage in the rut data while the 

other two did not; average SIP was about 16,500 passes.  There was no visual evidence of 

stripping. 

 
 

 
 
Figure 8.6 PURWheel Test Results for Mixture 12.5-50/RM-1 
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Figure 8.7 PURWheel Test Results for Mixture 12.5-50/RM-2 

 
 
 

 
 
Figure 8.8 PURWheel Test Results for Mixture 12.5-75/RM-1 
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Figure 8.9 PURWheel Test Results for Mixture 12.5-75/RM-2 

 
 
 

Table 8.12 Summary of PURWheel Wet Test Results for 50 and 75% RAP Mixtures 
 

    Failure  Visual Assessment 
Mixture ID Va (%)a Rep SIP Pass (mm) Bare Agg. Loose Agg. Crack 
12.5-50/RM-1 11.1 1-L 6,000 6,956 21.4 Yes No No 
  1-R 3,500 4,370 19.2 Yes No No 
 7.0 2-L 8,000 11,608 19.8 Yes No No 
  2-R None 20 k 7.2 Yes No No 
Average 9.1 --- 9,375 10,734 16.9 --- --- --- 
12.5-50/RM-2 11.1 1-L 4,000 4,318 26.1 Yes No No 
  1-R 5,000 6,454 19.1 Yes No No 
 6.5 2-L 12,500 17,960 24.4 Yes No No 
  2-R None 20 k 13.8 Yes No No 
Average 8.8 --- 10,375 12,183 20.9 --- --- --- 
12.5-75/RM-1 10.9 1-L 14,000 20 k 19.5 Yes No No 
  1-R 5,500 7,848 22.4 Yes No No 
 10.0 2-L 15,000 18,098 24.1 Yes No Yes 
  2-R None 20 k 4.6 Yes No No 
Average 10.5 --- 13,625 15,315 17.7 --- --- --- 
12.5-75/RM-2 7.6 1-L 12,500 16,248 22.5 Yes No No 
  1-R 13,500 17,940 21.6 Yes No No 
 6.6 1-L None 20 k 3.6 Yes No No 
  1-R None 20 k 4.4 Yes No No 
Average 7.1 --- 16,500 18,547 13.0 --- --- --- 
Note:  When no SIP was observed, 20,000 passes was used to calculate an average SIP. 
a)  Specimen air voids correlated to AASHTO T 331. 
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CHAPTER 9 
 

HIGH RAP-WMA COMPACTABILITY 
 
 

9.1 High RAP-WMA Compactability Overview 

This chapter contains analysis of relative compactability for highway mixtures 

using laboratory gyratory compaction data.  After review of literature, six parameters 

were selected for the compactability analysis: 1) percent of Gmm at 0 gyrations (%N0); 2) 

percent of Gmm at Nini (%Nini); 3) number of gyrations to 92% of Gmm (N92%); 4) number 

of gyrations to mixture locking point (NLP); 5) gyratory compaction slope (mG); and 6) 

gyratory compaction intercept (bG). 

Research by Leiva and West (2008a, 2008b) showed that several parameters can 

be used to assess relative compactability of mixtures in the laboratory.  Leiva and West 

(2008a) found gradation type to be the principal factor affecting laboratory compaction 

characteristics.  Fine graded mixtures were the easiest to compact and SMA mixes were 

the toughest (Leiva and West 2008a).  Values for %Nini ranged from 85.0 to 89.4 for the 

data.  Values for N92% ranged from 17.6 to 37.5.  Values for NLP were as low as 35 for 

fine graded mixes and as high as 60 for SMA.  Values for mG were observed below 7 for 

fine graded mixes and as high as 11.6 for SMA.  In total, 81 mixes were evaluated and in 

general it was observed that limestone aggregate was somewhat more difficult to compact 

than gravel aggregate.  The three parameters N92%, NLP and mG were mutually well 

correlated but not well correlated to field compaction data.  The best correlation between 
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laboratory and field compaction parameters was for N92% with R2 = 0.45 (Leiva and West 

2008b).  The intercept parameter bG may potentially be affected by binder content and 

viscosity (Çelik and Atiş 2008). 

 
 

9.2 Compactability Analysis 

To calculate the six compactability parameters for each specimen, height data 

collected during gyratory compaction was first converted to percentage of Gmm using a 

correction factor calculated according to the procedure of Vavrick and Carpenter (1998).  

The first four parameters were observed directly from the data.  Mixture locking point 

was defined as the first instance of two consecutive gyrations with the same specimen 

height (Leiva and West 2008a).  Data was then plotted with number of gyrations on the 

horizontal axis with a semi logarithmic scale and linear regression performed of the data 

between Nini and Ndes; slope and intercept were the fifth and sixth parameters.  

Compaction data for three replicate specimens of each mixture (except 12.5-15/CM-3 for 

which data was not available) was evaluated. 

Lower values of the parameter %N0 are interpreted to be mixtures that are 

potentially more difficult to place or initially compact.  Lower values of %Nini represent 

mixes that are tougher to compact (Leiva and West 2008a).  Mixes with high values of 

N92%, NLP or mG are considered to be tougher to compact in the laboratory (Leiva and 

West 2008a).  Lower values for bG are also considered to represent tough to compact 

mixes (Chadbourn et al. 1998). 
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9.2.1 Airfield Surface Mixtures 

Results of compactability analysis for airfield surface mixtures are presented in 

Table 9.1.  It is apparent that that warm mix additive does not produce much change in 

compactability.  ANOVA statistical analysis was performed of the data for each response 

parameter.  Results were the same for each response variable and indicated that factors of 

RAP content and aggregate type were statistically significant while warm mix was not.  

In addition, the interaction between RAP content and aggregate type was a significant 

effect for all response variables. 

 
 

Table 9.1 Compactability Data for Airfield Surface Mixtures 
 
Mixture Average Compactability Parameters 
ID %N0 %Nini N92% NLP mG bG 
12.5-0/AM-1 74.9 84.8 33 59 10.7 76 
12.5-0/AM-2 74.7 84.8 32 60 10.7 76 
12.5-0/AM-3 74.6 84.6 34 58 10.6 76 
12.5-0/AM-4 75.1 85.1 30 58 10.8 76 
12.5-25/AM-5 76.9 86.5 25 55 9.6 78 
12.5-25/AM-6 76.9 86.5 25 58 9.6 79 
12.5-25/AM-7 76.7 86.3 26 52 9.6 78 
12.5-25/AM-8 77.0 86.5 26 53 9.5 79 
12.5-50/AM-9 78.5 87.3 24 50 8.4 80 
12.5-50/AM-10 78.0 87.0 25 51 8.6 80 
12.5-50/AM-11 78.0 87.1 24 51 8.6 80 
12.5-50/AM-12 78.5 87.3 23 49 8.6 80 
12.5-0/AM-13 77.8 87.1 25 52 8.6 80 
12.5-0/AM-14 77.4 86.7 27 49 8.5 80 
12.5-0/AM-15 77.5 86.9 26 48 8.4 80 
12.5-0/AM-16 77.7 87.0 25 50 8.6 80 
12.5-25/AM-17 77.8 87.2 24 49 8.6 80 
12.5-25/AM-18 77.9 87.2 24 48 8.6 80 
12.5-25/AM-19 77.9 87.2 24 51 8.6 80 
12.5-25/AM-20 77.6 86.8 25 50 8.8 80 
12.5-50/AM-21 78.3 87.6 22 48 8.3 81 
12.5-50/AM-22 78.5 87.5 22 50 8.4 81 
12.5-50/AM-23 78.1 87.2 24 49 8.5 80 
12.5-50/AM-24 78.2 87.0 25 50 8.5 80 
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9.2.2 Highway Surface Mixtures 

Results of compactability analysis for highway surface mixtures are presented in 

Table 9.2.  Control mixture 4 appears to be noticeably more difficult to compact than the 

other control mixtures according to %N0, %Nini, N92% and bG parameters.  Results for the 

25 and 50% RAP mixtures fall generally within the range of control mixtures. 

 
 

Table 9.2 Compactability Data for Highway Surface Mixtures 
 
Mixture Average Compactability Parameters 
ID %N0 %Nini N92% NLP mG bG 
9.5-0/CM-1 77.6 87.2 22 49 8.8 80 
9.5-15/CM-2 79.1 87.5 21 46 7.9 82 
9.5-15/CM-3 77.4 87.3 21 50 8.6 80 
9.5-15/CM-4a 73.8 83.6 49 55 9.5 76 
9.5-15/CM-4b 75.1 84.6 47 51 8.6 78 
9.5-15/CM-4c 75.5 85.3 36 49 8.8 78 
9.5-25/RM-1 78.4 87.7 21 47 8.4 81 
9.5-25/RM-2 78.2 87.4 23 45 8.2 81 
9.5-50/RM-1 78.9 87.6 23 45 7.9 81 
9.5-50/RM-2 79.4 88.1 21 46 7.6 82 

 
 
 

9.2.3 Highway Base Mixtures 

Results of compactability analysis for highway base mixtures are presented in 

Table 9.3.  Compaction data was not available for control mixture 3.  Control mixture 1 

appears to be somewhat easier to compact than the other control mixtures according to all 

six parameters.  This result is thought likely due to CM-1 being the only fine-graded 

highway base mixture evaluated.  Results for 50 and 75% RAP mixtures generally fall 

within the range of results observed for control mixtures. 
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Table 9.3 Compactability Data for Highway Base Mixtures 
 
Mixture Average Compactability Parameters 
ID %N0 %Nini N92% NLP mG bG 
12.5-15/CM-1 81.7 89.3 16 34 5.9 85 
12.5-15/CM-2 77.4 86.9 26 49 8.5 80 
19.0-15/CM-4 78.9 87.6 26 44 7.3 82 
12.5-50/RM-1 78.9 87.6 26 44 7.3 82 
12.5-50/RM-2 79.1 87.3 20 44 8.6 81 
12.5-75/RM-1 80.7 88.6 15 44 8.5 82 
12.5-75/RM-2 80.1 87.8 19 43 8.1 82 
Note: Compaction data was not available for mixture 12.5-15/CM-3. 

 
 
 

9.2.4 100% RAP Mixtures 

Results of compactability analysis for 100% RAP mixtures are presented in Table 

9.4.  All three RAP sources gave generally comparable performance in terms of 

compactability.  All six parameters indicate that R-1 RAP source was toughest to 

compact.  Data for 100% RAP mixtures will be used for results discussion in Chapter 10. 

 
 

Table 9.4 Compactability Data for 100% RAP Mixtures 
 
Mixture Average Compactability Parameters 
ID %N0 %Nini N92% NLP mG bG 
9.5-100/RM-1 79.5 87.6 23 45 8.1 81 
9.5-100/RM-2 80.7 88.9 17 39 7.1 83 
12.5-100/RM-3 81.2 88.7 20 38 6.5 84 

 
 
 

9.3 Summary of Compactability Analysis 

Six parameters were chosen for the compactability analysis that are easy to 

compute from gyratory compaction data.  Previous research by Leiva and West (2008a) 

has indicated that some of the parameters may be strongly correlated.  The current data 

set was investigated for correlations between parameters using compaction data for all 43 
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mixtures.  Results are presented in Table 9.5 in terms of Pearson correlation coefficients 

for each combination of variables.  It is observed that very strong correlations are present 

between most of the variables.  This result aligns with that of Leiva and West (2008a). 

 
 

Table 9.5 Pearson Correlation Coefficient Matrix for Compactability Parameters 
 
 %N0 %Nini N92% NLP mG 
%Nini 0.967     
N92% -0.851 -0.913    
NLP -0.818 -0.757 0.540   
mG -0.828 -0.788 0.496 0.882  
bG 0.966 0.961 -0.786 -0.866 -0.921 
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CHAPTER 10 
 

DISCUSSION OF RESULTS 
 
 

10.1 Results Discussion Overview 

This chapter presents discussion of mixture volumetrics and performance testing 

results for the high RAP-WMA mixtures that were presented in Chapters 6, 7, 8 and 9.  

Performance of the recycled mixtures is discussed in context of performance of the low 

RAP content control mixtures and also performance of 100% RAP mixtures that was 

presented in Chapter 5.  Four major categories of mixture performance were investigated 

in this study: 1) durability; 2) crack resistance; 3) rut resistance; and 4) moisture 

susceptibility.  Discussion of each performance category is divided into subsections for 

each category of intended pavement application (i.e. airfield or highway mixtures and 

surface or base mixtures) as well as overall discussion of high RAP mixtures. 

 
 
10.2 Volumetrics 

 
 
10.2.1 Airfield Surface Mixtures 

In general the total and asphalt contents of the mixtures containing limestone 

virgin aggregate are lower than those containing crushed gravel aggregate; this is 

reasonable due to the higher specific gravity and lower asphalt absorption of the 

limestone aggregate relative to the gravel aggregate.  For the 25% RAP limestone mixes 
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the ratio of virgin asphalt to asphalt contributed by the RAP is roughly 75:25.  For the 

50% RAP limestone mixes the ratio is roughly 55:45.  For the gravel mixes the ratios are 

roughly 80:20 and 60:40 for the 25% and 50% RAP mixes, respectively.  

There is a large reduction in total asphalt content in the 0% RAP gravel mixes 

from the hot mix (12.5-0/AM-13) to the warm mixes with additives (12.5-0/AM-14 and 

12.5-0/AM-15).  A portion of this reduction is thought to be due to reduced absorption of 

asphalt binder by the gravel aggregate at lower short term aging temperatures.  Pba for 

mixtures AM-14 and AM-15 is 0.2% less than for mixture AM-13.  A 0.4% reduction in 

Pbe is also seen for mixtures AM-14 and AM-15 compared to mixture AM-13. 

For the 50% RAP crushed gravel mixtures, an increase in total asphalt content is 

noted in mixtures 12.5-50/AM-22 (Sasobit®) and 12.5-50/AM-23 (Evotherm™ 3G) 

compared to mixture 12.5-50/AM-21 (hot mix).  This is thought to be partially due to 

reduced rejuvenating of the RAP surface asphalt at the lower temperature compared to 

the hot mix; additional virgin binder is therefore required to achieve compaction.  For 

example the total asphalt content of mix AM-14 (0% RAP with Sasobit®) is 6.0% and the 

total asphalt content of mix AM-22 (50% RAP with Sasobit®) is 7.0%.  The two 

aggregate gradations are of nearly identical shape and mix AM-22 contains just over half 

the amount of virgin gravel aggregate that mix AM-14 does.  It was shown that RAP 

aggregate does not absorb additional virgin asphalt and that the virgin aggregate absorbs 

less asphalt at a lower short term aging temperature.  The additional 1.0% of total asphalt 

can therefore be at least partly explained by a reduction in rejuvenation of the RAP 

surface asphalt.  Chapter 5 RAP characterization results support this conclusion. 
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10.2.2 Highway Surface Mixtures 

Characterization of RAP volumetrics showed that the virgin asphalt demand of 

the R-1 and R-2 RAP sources varied depending on compaction temperature and other 

factors.  This difference is evident in volumetric properties of the 25 and 50% RAP 

recycled surface mixtures produced at a warm mix temperature of 116 C.  The 9.5-

25/RM-1 RAP recycled mixture required 0.5% more virgin asphalt than did the R-2 RAP 

mixture (9.5-25/RM-2) with the same virgin aggregate proportions and comparable total 

gradation.  The 9.5-50/RM-1 RAP recycled mixture required 0.3% more virgin asphalt 

than did the R-2 RAP mixture (9.5-50/RM-2) with the same virgin aggregate proportions 

and comparable total gradation.  Testing a single source RAP with added virgin binder 

has promise in detecting asphalt demand in a new mixture as the data in Chapter 5 

showed R-1 bitumen was more difficult to re-liven than R-2 bitumen, which agrees with 

the mixture data.  Effects of parameters such as heating temperature and heating time can 

also be detected on 100% RAP, at least to some extent. 

 
 
10.2.3 Highway Base Mixtures 

Differences in aggregate gradations make the volumetrics of high RAP highway 

base mixtures more difficult to compare.  For both 50 and 75% RAP, mixtures containing 

R-1 RAP source required at least 1% more virgin binder than those containing R-2 RAP 

source.  This result agrees with Chapter 5 results. 
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10.2.4 All Mixtures 

The results of Chapter 5 indicated that varying temperatures would change the 

amount of RAP bitumen that will re-liven and that the temperature dependent behaviors 

were different for each RAP source.  The temperature dependence of R-1 RAP source 

was observed in the volumetric data for airfield mixtures.  Differences in RAP sources 

were observed in the volumetric data for highway mixtures. 

 
 

10.3 Durability 

Selecting and using a good durability test is difficult since there is not general 

agreement on what test is useful for predicting durability.  For this study the Cantabro test 

was used to assess durability.  It has shown some potential to be useful for porous 

mixtures and it seems to have some potential for use with dense graded mixes.  It should 

at least be capable of providing relative rankings of the mixtures. 

 
 

10.3.1 Airfield Surface Mixtures 

Durability is a major concern for the surface of airfield pavements due to the 

potential for foreign object debris (FOD) causing damage to aircraft.  Specimens were 

compacted with design compactive effort.  Only the R-1 RAP source was investigated for 

this component of the research.  Results of the designed experiment indicated that use of 

warm mix was not a statistically significant factor on mass loss, but that RAP content 

was; virgin aggregate type was only significant for 0% RAP mixtures.  Figure 10.1 

presents the results organized by RAP content and virgin aggregate type.  Mass loss 

increases as the RAP content increases. 
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Figure 10.1 Cantabro Mass Loss for Airfield Surface Mixtures 
 

 
 

10.3.2 Highway Surface Mixtures 

Durability is also a concern for highway surface mixtures.  Since the Cantabro test 

has seldom been used for dense graded mixtures, a random selection of QA specimens 

was tested to establish a baseline of expected performance of conventional practice 

Mississippi surface mixtures.  Data in previous chapters showed a considerable effect of 

air voids, which should be considered when interpreting the data presented in this section. 

Figure 10.2a presents test results of un-aged Cantabro durability specimens 

compacted to Ndes as this would be most desirable for use as a routine quality control tool.  

The band of results determined for control mixtures (2.8 to 11.7%) is represented by 

horizontal dashed lines.  Mass loss for 25% RAP recycled mixtures was on the order of 

12 to 13% and comparable to the upper end of Cantabro performance observed for 

control mixtures.  Mass loss for 50% RAP mixtures was on the order of 14 to 17% which 

was slightly higher than the observed range of performance for control mixtures.  For the 
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R-1 RAP source, increasing the amount of RAP from 25 to 50% caused an increase in 

mass loss of about 5%.  For the R-2 RAP source, increasing the amount of RAP from 25 

to 50% caused an increase in mass loss of about 1%.  Mass loss of all control, 25 and 

50% RAP mixtures was less than the 20% upper limit for mass loss recommended in 

literature for OGFC and PFC mixtures. 

Figure 10.2b presents test results of un-aged Cantabro specimens compacted to 

target air voids.  Mass loss of both the control mixtures was about 8%.  Mass loss of 25% 

RAP mixtures was about 11.5% for both RAP sources.  For 50% RAP mixtures, the R-1 

RAP source mixture had higher mass loss (16.5%) than the R-2 RAP mixture (10%). 

Testing of 100% RAP indicated that mixtures containing R-1 RAP would likely 

have higher mass loss than mixtures containing R-2 RAP.  Cantabro testing of 100% 

RAP mixtures successfully predicted the relative performance of the different RAP 

sources in 50% RAP mixtures.  For 25% RAP mixtures, Cantabro performance was 

similar regardless of RAP source. 
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a)  Specimens with Ndes Compactive Effort 

 
b)  Specimens with Target 4% Air Voids 

 
Figure 10.2 Effect of RAP Source on Cantabro Mass Loss for Un-Aged Specimens 
 
 
 

The effects of R-30 aging on mass loss are presented in Figure 10.3.  Control 

mixtures designed according to current practice experienced an increase in mass loss of 2 

to 4% compared to un-aged specimens.  For 25% and 50% RAP, the increase in mass loss 

with aging was about 6% and 9% above un-aged results, respectively.  The data indicates 
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that specimens with more RAP may become more prone to durability problems over time 

than would conventional mixtures; more investigation is needed to fully explain this. 

Overall, results indicated that mixtures with high RAP may be somewhat more 

prone to durability issues than current practice mixtures, but the data did not indicate that 

durability problems would prohibit their use.  At higher RAP contents not all RAP 

sources will give the same level of performance at a particular percentage of total 

mixture.  None of the results indicated that use of high RAP in surface mixtures would 

not be feasible. 

 
 

 
 

Figure 10.3 Effect of Laboratory Aging on Cantabro Mass Loss for Select Mixtures 
 
 
 

10.3.3 Highway Base Mixtures 

Durability is less of a concern for base mixtures than for surface mixtures due to 

the lack of direct exposure to traffic; however the Cantabro test can still provide an 
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Figure 10.4 presents test results of un-aged Cantabro durability specimens compacted to 

Ndes.  The 50% RAP mixtures are within the range of ML observed for control mixtures.  

The 75% RAP mixtures have somewhat higher ML than the control mixtures.  Testing of 

100% RAP was unable to predict 50 and 75% RAP mixture performance; likely due to 

the large differences in virgin asphalt contents between mixtures with each RAP source. 

 
 

 
 

Figure 10.4 Effect of RAP Source on Cantabro Mass Loss for Highway Base Mixtures 
 
 
 

10.3.4 All Mixtures 

More information is needed to make informed decisions about suitability of high 

RAP-WMA mixtures for airfields in terms of durability.  For highway surface 

applications, data indicates that mixtures containing up to 25% RAP would have initial 

Cantabro mass loss comparable to existing current practice mixtures but that additional 
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indicates that mixtures containing 50% RAP would have initial Cantabro mass loss 

comparable to existing current practice mixtures. 

All the test results indicated that increasing the RAP content will tend to increase 

mass loss.  This may translate to decreased durability of the mixture in practice, but this 

is very difficult to quantify with the data available.  Further research is needed to 

determine the relationship between laboratory performance in the Cantabro test and 

performance of field mixtures with respect to durability.  Results of test sections 

containing 45% RAP at the NCAT test track led West et al. (2009) to observe that 

resistance to raveling was likely to be very good for high RAP mixes. 

 
 

10.4 Crack Resistance 

Resistance to cracking is an important quality for all asphalt pavement 

applications.  For surface mixtures, low temperatures are a frequent cause of thermal 

cracking.  For base mixtures, repeated loading is a frequent cause of fatigue cracking. 

 
 

10.4.1 Airfield Surface Mixtures 

The potential for thermal cracking in airfield surface mixtures was evaluated with 

both binder testing and with BBR mixture beam testing.  Results of the binder testing 

indicated that high RAP mixtures did not affect the low temperature properties as much 

as the high temperature properties.  In fact the low temperature grade was only raised by 

approximately 3 degrees when going from 0% RAP to 25% RAP.  While this increase is 

not good, it is much less than would be expected.  When using 50% RAP the low 

temperature grade was increased approximately 8 degrees.  Again, this is considerable 



www.manaraa.com

320 

but much less than expected based on its effect on the high temperature properties.  The 

final low temperature grading for the asphalt at 50% RAP is almost a -20 which is very 

close to the -22 that the new binder is classified.  The lower mixing temperature is 

thought to minimize any change in this low temperature grade. 

Results of the BBR mixture beam testing indicated that use of warm mix was not a 

statistically significant factor on mixture stiffness.  Figure 10.5 presents the results 

organized by RAP content and virgin aggregate type and test temperature.  In some cases 

at the -12 C test temperature (Figure 10.5a) there were differences between virgin 

aggregate types but the differences were not statistically significant.  RAP content was 

determined to be a statistically significant factor for both test temperatures.  For the -06 C 

test temperature (Figure 10.5b), the increase in mixture stiffness when RAP content 

increases from 25 to 50% was not as large as when RAP content increased from 0 to 

25%.  For the -12 C test temperature, the increase in mixture stiffness was relatively 

consistent for both increases in RAP content.  Further testing is needed to make an 

informed decision about suitability of high RAP contents for airfield surface mixtures 

with respect to thermal cracking. 
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a)  -12 C Test Temperature 

 
b)  -06 C Test Temperature 

 
Figure 10.5 Mixture Stiffness for Airfield Surface Mixtures 

 
 
 

10.4.2 Highway Surface Mixtures 

BBR mixture testing was performed at -24 C and -18 C to bracket the low 

temperature performance grade of the virgin binders used in this study.  Additional 

testing was performed at -12 C and -06 C to provide a measurement of mixture stiffness 
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at temperatures that can occur in the field slightly above the low temperature 

performance grade of the virgin binder.  Results of control mixture testing established 

that control mixtures two and three represented the lowest and highest stiffnesses for 

plant produced control mixtures at all loading times and test temperatures. 

Figures 10.6 and 10.7 present the effects of RAP source on mixture stiffness at 

960 seconds for -24 C and -18 C test temperatures.  Stiffness of all the 25 and 50% RAP 

mixtures was within the range of stiffness observed for plant produced control mixtures.  

Designed 100% RAP mixtures also fell within the range of control mixtures.  Figures 

10.8 and 10.9 present the effects of RAP source on mixture stiffness at 960 seconds for -

12 C and -06 C test temperatures.  Stiffness of all the 25 and 50% RAP mixtures was 

higher than the range of stiffness observed for plant produced control mixtures.  Designed 

100% RAP mixtures also fell above the range of control mixtures.  This increased 

stiffness may suggest that the mixes are more susceptible to cracking.  Further testing is 

needed to make definitive statements as to why the mixtures perform within the control 

bands at temperatures bracketing the low temperature grade of virgin binder used in 

Mississippi, but are above the control bands at higher temperatures. 
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Figure 10.6 Effect of RAP Source on Mixture Stiffness at -24 C 
 
 
 

 
 

Figure 10.7 Effect of RAP Source on Mixture Stiffness at -18 C 
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Figure 10.8 Effect of RAP Source on Mixture Stiffness at -12 C 
 
 
 

 
 

Figure 10.9 Effect of RAP Source on Mixture Stiffness at -06 C 
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conventional practice) but better than the 85 gyration mixture (least crack resistant in 

conventional practice) in terms of stiffness.  This provides some evidence that a 65 

gyration designed mixture with 25 to 50% RAP can perform in a comparable manner in 

the context of cracking relative to a control mixture.  At -12 C and -06 C, this behavior 

was not observed. 

Testing of 100% RAP indicated mixtures containing R-2 RAP source would 

likely have higher stiffness than mixtures containing R-1 RAP.  This result is 

counterintuitive given the higher low temperature PG grade for the R-1 asphalt (+1.7) 

compared to the R-2 asphalt (-3.5).  Of the eight cases where R-1 and R-2 RAP sources 

were tested for the same conditions (two RAP levels and four test temperatures) only 

three followed the prediction.  In another three of the eight cases the stiffness of R-1 and 

R-2 mixtures was about the same.  For the last two cases the observed results were 

reverse of the prediction.  Testing of 100% RAP only correctly predicted the relative 

ranking of mixture stiffness for the R-1 and R-2 RAP sources in 25 and 50% RAP 

mixture in three of eight cases.  Low temperature binder grades of the R-1 and R-2 RAP 

sources only correctly predicted the relative ranking of mixture stiffness in 25 and 50% 

RAP mixture in two of eight cases. 

Data from BBR mixture testing was utilized to estimate the critical cracking 

temperature (Tcr) for the 25 and 50% RAP mixtures and the relative highest and lowest 

stiffness control mixtures.  Estimation of the temperature where thermal stress and tensile 

strength intersect yielded the most reasonable estimates of Tcr; Figure 10.10 summarizes 

the estimated Tcr temperatures.  Mixtures with 25% RAP performed similarly to control 
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mixtures.  Mixtures with 50% RAP had higher Tcr temperatures (i.e. higher likelihood of 

cracking) than control mixtures and 25% RAP mixtures. 

 
 

 
 

Figure 10.10 Effect of RAP Source on Tcr Estimates for Highway Surface Mixtures 
 
 
 
Overall, mixtures with 25% RAP did not exhibit characteristics to prohibit 

recommendation of use on the surface.  Mixtures with 50% RAP exhibited potentially 

problematic behavior in thermal cracking analysis and at BBR test temperatures 

somewhat above the low temperature binder grade in Mississippi.  Results indicated that 

BBR stiffness of mixtures with high RAP at temperatures near the low temperature 

performance grade of virgin binder (-22 C) is within the range of stiffness results 

observed for current practice mixtures.  Results of testing at temperatures slightly above 

the low temperature performance grade indicated that high RAP mixtures may be 

somewhat stiffer than conventional practice mixtures.   
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10.4.3 Highway Base Mixtures 

Highway base mixtures were tested for indirect tensile strength at 25 C to provide 

an assessment of mixture brittleness and fatigue crack potential.  However, it must be 

noted that increased mixture tensile strength alone is not sufficient to indicate higher 

potential for fatigue cracking.  Several sources cited in literature review did not observe 

any higher incidence for fatigue cracking in high RAP mixtures than in conventional low 

RAP mixtures.  Figure 10.11 presents the tensile strength data for base mixtures.  50% 

RAP mixtures had similar or slightly higher tensile strength than control mixtures.  75% 

RAP mixtures had higher tensile strength than controls and only slightly lower than 

100% RAP mixtures.  Higher tensile strengths of mixtures with R-2 RAP than those with 

R-1 RAP are thought to likely due to higher virgin asphalt content in mixtures with R-1 

RAP even though R-2 RAP asphalt is less stiff than R-1 RAP. 

 
 

 
 

Figure 10.11 Effect of RAP Source on Tensile Strength for Highway Base Mixtures 
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10.4.4 All Mixtures 

Determining the relative potential of a given asphalt mixture to develop cracks is 

a difficult task given the many factors of mixture properties, environmental distresses and 

pavement structure that can contribute to cracking performance.  For airfield surface 

mixtures the data indicates a somewhat increased potential for cracking; however the 

increase in cracking potential is not a great as might be expected with high RAP contents.  

For highway surface mixtures the cracking potential of 25% RAP mixtures is quite 

comparable to that of conventional practice low RAP mixtures; 50% RAP mixtures may 

have a moderately increased cracking potential relative to current practice mixtures.  For 

highway base mixtures, the data indicates that 50% RAP mixtures have similar tensile 

strengths to current practice mixtures and 75% RAP mixtures have higher tensile 

strengths than control mixtures. 

 
 

10.5 Rut Resistance 

Rut resistance is an important quality for mixtures in all pavement layers.  The 

temperatures and contact pressures experienced by mixtures on the pavement surface will 

generally be higher than those of deeper pavement layers.  Binder testing and APA testing 

were used to evaluate rut resistance for airfield surface mixtures.  APA testing and the 

PURWheel dry protocol testing were utilized to evaluate mixture rut resistance for 

highway mixtures. 
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10.5.1 Airfield Surface Mixtures 

For airfield mixtures, the data clearly showed that adding RAP reduced the 

amount of rutting.  The primary reason for this is the stiffer asphalt in high RAP content 

mixtures.  Rutting is reduced significantly with higher RAP content due to its effect on 

the grade of asphalt.  Adding 25% RAP appeared to result in approximately an 8 degree 

increase in the high PG temperature.  Adding 50% RAP increased the high temperature 

grade of the asphalt by approximately 20 degrees.  This increase in high temperature 

grade is useful to resist rutting but should not adversely affect other properties.  APA rut 

results also showed that increasing RAP resulted in less rutting.  The amount of rutting in 

the field is anticipated to be low in these high RAP-WMA mixtures. 

 
 

10.5.2 Highway Surface Mixtures 

Two test methods were used to evaluate rut resistance: 1) APA; and 2) PURWheel 

dry protocol.  APA testing was selected as a conventional test method; specimens were 

tested at nominal air void levels of 7 and 10%.  PURWheel dry protocol testing was 

selected as a more simulative wheel tracking test method to evaluate rutting as well as 

being a complement to PURWheel wet protocol testing. 

The 50 gyration control mixture exhibited the highest APA total rut depths (≈12 

mm), and the 85 gyration mixture exhibited the lowest total rut depths for both nominal 

air void levels.  Control mixtures with polymer-modified binder had total rut depths on 

the order of 2 to 3.5 mm for nominal 7% air voids and on the order of 6 mm for nominal 

10% air voids.  PURWheel dry protocol results confirmed that the 50 gyration control 

mixture performed poorly and that mixtures containing polymer-modified binder 
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performed well.  PURWheel testing indicated a difference in rutting between the field 

and laboratory mixed version of the 85 gyration control mixture with PG 67-22 binder 

that was not observed in APA results. 

Figure 10.12 presents results of APA testing in terms of RAP source.  The range 

of results from testing control mixtures with PG 67-22 and PG 76-22 binder grades are 

represented with horizontal lines in Figure 10.12.  For specimens of 25 and 50% RAP 

mixtures with 7% nominal air voids (Figure 10.12a) the total rut depths are less than the 

lowest measured for PG 67-22 control mixtures and are comparable to results for 

polymer modified control mixtures.  For specimens of 25 and 50% RAP mixtures with 

10% nominal air voids (Figure 10.12b) the total rut depths are also comparable with the 

best performing control mixtures. 

Figure 10.13 presents of PURWheel dry protocol testing in terms of RAP source.  

Mixtures containing 25% RAP had a level of rutting well within and generally at the 

lower end of the range observed for control mixtures.  Mixtures containing 50% RAP had 

total rut depths either at the lower end of or less than the range observed for control 

mixtures. 
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a)  Nominal 7% Va Specimens 

 
b)  Nominal 10% Va Specimens 

 
Figure 10.12 Effect of RAP Source on APA Rutting of Surface Mixtures 
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Figure 10.13 Effect of RAP Source on PURWheel Dry Rutting of Surface Mixtures 
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10.5.3 Highway Base Mixtures 

The same test methods used to evaluate rutting for highway surface mixtures were 

used to test rut resistance of highway base mixtures.  Figure 10.14 presents results of 

PURWheel dry protocol testing for highway base mixtures.  Rutting of the 50 and 75% 

RAP mixtures was within the range of control mixture performance or better than control 

mixtures.  The differences are small but R-1 mixtures rutted more than R-2 mixtures; this 

is likely due to the greater virgin asphalt content in R-1 mixtures. 

Results of APA testing are presented in Figure 10.15.  For nominal 7% air voids 

specimens, the 50% RAP mixtures had similar or lower total rut depths to control 

mixtures; 75 % RAP mixtures had lower rutting than the controls.  For nominal 10% air 

voids specimens, both the 50 and 75% RAP specimens had lower rutting than the control 

mixtures.  Overall, dry rutting is unlikely to be a major concern for high RAP base 

mixtures. 

 
 

 
 

Figure 10.14 Effect of RAP Source on PURWheel Dry Rutting of Base Mixtures 
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a)  Nominal 7% Va Specimens 

 
b)  Nominal 10% Va Specimens 

 
Figure 10.15 Effect of RAP Source on APA Rutting of Base Mixtures 
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and base pavement layers.  Designing high RAP mixes with 65 gyrations compactive 

effort appeared to effectively balance rut and crack resistance for highway mixtures. 

 
 

10.6 Moisture Damage Susceptibility 

The conditions which can lead to moisture damage in asphalt mixtures susceptible 

to moisture can occur in any layer of a pavement.  As a consequence, assessment of the 

susceptibility of asphalt mixtures to moisture damage is an important consideration.  

Moisture susceptibility must be carefully evaluated for high RAP-WMA due to the 

unknown potential for moisture damage from the interaction of lower warm mix 

production temperatures and high RAP contents. 

 
 

10.6.1 Airfield Surface Mixtures 

TSR testing was used to evaluate moisture resistance for airfield surface mixtures.  

Generally, increasing RAP content increased moisture damage resistance of airfield 

mixes.  Inclusion of 25% RAP improved moisture resistance compared to 0% RAP in six 

of eight cases.  Inclusion of 50% RAP either improved or did not noticeably decrease 

moisture resistance compared to 0% RAP in all eight cases.  While WMA mixes often 

tend to have lower resistance to moisture than HMA mixes, the addition of RAP may be a 

reasonable solution to this problem.  The asphalt coating the RAP is very hard and tightly 

bonded to the aggregate which makes it very difficult to strip when the RAP is used in a 

recycled mixture.  Using RAP and WMA has the potential to alleviate stripping 

problems. 
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10.6.2 Highway Surface Mixtures 

Two test methods were selected to evaluate moisture susceptibility of asphalt 

mixtures for highway surface mixtures: 1) TSR; and 2) PURWheel wet protocol test.  

Results of TSR moisture susceptibility testing shown in Figure 10.16a indicated that all 

control, 25% RAP, and 50% RAP mixtures should provide acceptable performance (i.e. 

TSR greater than 80%) with regards to potential for moisture damage.  Results of 

PURWheel wet protocol testing shown in Figure 10.16b indicated that 25 and 50% warm 

mixed RAP mixtures generally did not perform quite as well as plant mixed HMA 

controls.  For control mixture wet testing, 50% of the specimens exhibited evidence of 

moisture damage.  For 25 and 50% RAP mixture wet testing, on the order of 80% of the 

specimens exhibited evidence of moisture damage (7 of 8 for 25% RAP and 6 of 8 for 

50% RAP).  The data provided does not allow definitive statements as to whether high 

RAP content, warm mix temperatures, or other factors made the mixes in this study 

perform worse in the PURWheel wet protocol test than the control mixtures.  

The data presented in this study indicates that TSR testing and PURWheel wet 

protocol testing did not provide the same relative results for 25 and 50% RAP mixes in 

terms of potential for moisture damage.  Performance of the R-1 RAP source in 

PURWheel wet testing did not vary much regardless of its proportion in the mixture 

being tested.  Performance of mixtures containing R-2 RAP improved as the amount of 

RAP was increased; this result coincides with the results observed for airfield surface 

mixtures albeit for different test methods. 

It is not known if the 64 C submerged specimen high pressure loaded wheel 

PURWheel wet protocol test is overly aggressive in relation to potential conditions 
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experienced by Mississippi mixtures in the field.  However, any mixture that can reliably 

survive the PURWheel wet protocol test (Howard et al. 2010) without exhibiting 

evidence of moisture damage is thought likely to give good performance in the field.  The 

lower limit of PURWheel wet test results that correlates to acceptable performance in the 

field has not yet been established.  

TSR results for 100% RAP indicated some potential for moisture sensitivity might 

exist with the recycled mixtures containing R-2 RAP but no such problems were 

observed in the TSR test results for 25 and 50% RAP mixtures.  Testing of designed 

100% RAP mixtures in the PURWheel wet test indicated that R-2 RAP would likely give 

better moisture damage resistance in recycled mixtures.  However, PURWheel wet 

testing of 25 and 50% RAP mixtures indicated that the R-1 RAP source provided better 

moisture damage resistance than the R-2 RAP source.  Overall, results of PURWheel 

testing indicated that high RAP-WMA mixtures are somewhat more prone to moisture 

damage than the current practice HMA mixtures tested.   
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a)  TSR Test Results 

 

 
b)  PURWheel Wet Protocol Test Results 

 
Figure 10.16 Effect of RAP Source on Moisture Susceptibility of Surface Mixtures 
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Figure 10.17a.  The results indicate that all the 50 and 75% RAP mixtures tested pass the 

commonly accepted pass/fail criteria of 80% TSR. 

Results of the PURWheel wet protocol testing are provided in Figure 10.17b.  

Average SIPs for the 50% RAP mixtures were slightly less than those for control 

mixtures two to four.  Mixtures with 75% RAP outperformed control mixtures somewhat 

with respect to average SIPs.  Mixtures containing R-2 RAP performed slightly better 

than those with R-1 RAP source for both 50 and 75% RAP mixtures; this was also 

observed in the 100% RAP testing. 

A crucial issue with respect to moisture susceptibility of high RAP mixtures that 

is not fully evident from the test data is the difficulty in achieving adequate coating of 

coarse virgin aggregate particles.  This is especially difficult for 75% RAP mixtures, 

where the virgin aggregate component is composed mostly of coarse aggregate.  Figure 

10.18 illustrates this for compacted slab specimens ready for PURWheel testing; mixtures 

with R-2 RAP source are shown but similar results were observed for R-1 RAP mixtures.  

Inadequately coated coarse aggregate particles are readily visually apparent in the 

compacted 75% RAP slab.  Mixtures unable to achieve adequate aggregate coating in the 

closely controlled environment of a laboratory mixing process may also be difficult to 

coat in the more variable environment of plant mixing process.  The 75% RAP mixtures 

held up relatively well in TSR and PURWheel wet testing due to the very high binder 

stiffness of the mixtures contributed from the RAP; however uncoated aggregate may 

lead to moisture damage problems in service. 
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a)  TSR Test Results 

 

 
b)  PURWheel Wet Protocol Test Results 

 
Figure 10.17 Effect of RAP Source on Moisture Susceptibility of Base Mixtures 
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Figure 10.18 Laboratory Mixing Efficiency for High RAP Contents (R-2 RAP Shown) 
 
 
 
10.6.4 All Mixtures 

TSR testing for airfield mixtures indicated that moisture damage would likely not 

be a problem with high RAP-WMA; however additional moisture damage wheel tracking 

testing should be performed to verify this result.  Results for highway surface and base 

mixtures indicated slightly increased moisture damage susceptibility for mixtures with up 

to 50% RAP compared to current practice mixtures.  Mixtures with 75% RAP are not 

recommended for use due to inadequate coating of coarse aggregate. 

 
 

10.7 Compactability Analysis 

 
 

10.7.1 Airfield Surface Mixtures 

Statistical analysis of airfield mixture results indicated that warm mix was not a 

significant factor but that RAP content and virgin aggregate type were.  Results for 

airfield mixtures are plotted in Figure 10.19.  Consistent trends are observed for all six 

parameters that limestone mixtures were tougher to compact than gravel mixtures. 

 100% R-2 RAP Slab-  75% R-2 RAP Slab-  50% R-2 RAP Slab-
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        a)  %N0             b)  %Nini 

 

        c)  N92%            d)  NLP 

 

       e)  mG             f)  bG 

 
Figure 10.19 Compactability Results for Airfield Surface Mixtures 
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All levels of RAP content for crushed gravel virgin aggregate had similar levels 

of compactability while the addition of RAP to limestone aggregate mixtures tended to 

improve compactability.  This may be because limestone aggregate is more difficult to 

compact than gravel aggregate (Leiva and West 2008a) and that the RAP was primarily 

composed of gravel aggregate.  Values for %Nini, N92%, NLP and mG for airfield mixtures 

were all within the ranges of values reported by Leiva and West (2008a). 

 
 

10.7.2 Highway Surface Mixtures 

Compactability data for highway surface mixtures is summarized in Figure 10.20.  

Dashed lines represent the highest and lowest values observed for control mixtures.  25% 

RAP mixtures fall within the range of control mixtures in most cases.  In general, 25 and 

50% RAP mixtures appear to have similar laboratory compactability to current practice 

mixtures.  Little difference is observed between RAP sources when used at 25 and 50%, 

although some differences are observed for 100% RAP with R-1 RAP source being 

somewhat tougher to compact than R-2.   
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        a)  %N0             b)  %Nini 

  

        c)  N92%            d)  NLP 

 

       e)  mG             f)  bG 

 
Figure 10.20 Compactability Results for Highway Surface Mixtures 
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10.7.3 Highway Base Mixtures 

Compactability data for highway base mixtures is summarized in Figure 10.21.  

Dashed lines represent band of control mixture results.  Compactability of 50% RAP falls 

within the range of control mixtures in nearly all cases.  75% RAP mixtures also have 

reasonable levels of laboratory compactability.  Parameters of %N0, %Nini and NLP predict 

similar compactability of both RAP sources at the 50% level, while mG and bG predict R-

2 RAP source is tougher to compact and N92% predicts that R-1 RAP source is tougher to 

compact.  These results do not align well with results of 100% RAP testing where all six 

parameters predicted that R-1 RAP source was more difficult to compact. 
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        a)  %N0             b)  %Nini 

 

        c)  N92%            d)  NLP 

 

       e)  mG             f)  bG 

 
Figure 10.21 Compactability Results for Highway Base Mixtures 
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10.7.4 All Mixtures 

Overall, results of the laboratory compactability analysis for high RAP-WMA 

indicate that high RAP mixtures are generally comparable to current practice low RAP 

mixtures.  This is encouraging in terms of ease of construction for these mixtures; 

however analysis of laboratory compactability has been unable to provide accurate 

prediction of field compactability for other researchers (Leiva and West 2008b).  All six 

compactability parameters evaluated were generally strongly correlated and yielded the 

same trends in terms of predicted compactability for high RAP mixtures. 
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CHAPTER 11 
 

CONCLUSIONS AND RECOMMENDATIONS 
 
 

11.1 Summary 

This dissertation focused on four major areas: 1) characterization of RAP 

properties; 2) high RAP-WMA for airfield surface mixtures; 3) high RAP-WMA for 

highway surface mixtures; and 4) high RAP-WMA for highway base mixtures.  To 

characterize RAP properties a unique approach was taken that coupled a dataset of 

properties for 568 asphalt mix designs spanning five years of practice and testing of 

100% RAP with added virgin binder; 394 compacted specimens and 68 loose specimens 

of 100% RAP were tested.  A method to predict RAP absorbed asphalt was developed 

requiring two inputs: 1) total asphalt content; and 2) RAP Gse when coated with virgin 

binder.  The method was shown to yield more reasonable results than conventional 

methods which were shown very likely to give incorrect absorbed asphalt estimates in 

some conditions.  The relative effectiveness of RAP surface asphalt was evaluated and 

estimates of inert and effective RAP asphalt were made for a variety of temperature, 

compactive effort, and warm mix additive conditions.  Results showed different 

behaviors between RAP sources and between hot and warm mix temperatures.  These 

results were also observed in volumetrics of high RAP mixtures. 

Performance evaluation of airfield surface mixtures considered durability, non-

load associated cracking, rutting resistance and moisture susceptibility.  Crushed gravel 
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and limestone aggregate mixtures were tested with 0 to 50% RAP in conjunction with 

three warm mix asphalts.  Test results indicated high RAP-WMA is a potentially viable 

product for surface mixtures.  WMA was shown capable of producing rut resistant 

mixtures with high RAP contents.  A more intriguing finding was that while increasing 

rut resistance the high RAP mixtures did not affect the low temperature properties as 

much as the high temperature properties.  Mixtures with high RAP content appear to be 

only slightly more susceptible to thermal cracking.  Based on TSR testing alone, it was 

shown that, in general, WMA technology can be used with high RAP content to produce 

mixtures that are more resistant to moisture damage.  Testing indicated high RAP content 

WMA mixes may be more susceptible to durability issues than low RAP mixes. 

Performance evaluation of highway surface mixtures considered durability, non-

load associated cracking, rutting resistance and moisture susceptibility.  Testing indicated 

that high RAP mixtures containing 25% RAP would likely have comparable durability 

performance and thermal crack resistance to current practice low RAP content highway 

surface mixtures; 50% RAP mixes may have slightly higher potential for durability and 

thermal cracking problems.  Rut resistance of high RAP mixtures was found to be similar 

to or better than current practice mixtures with PG 67-22; in some cases high RAP 

mixtures had performance similar to current practice PG 76-22 mixtures.  PURWheel wet 

testing indicated a slightly higher potential for moisture damage than current mixtures; 

TSR testing did not. 

Performance evaluation of highway base mixtures considered durability, crack 

resistance, rutting resistance and moisture susceptibility.  Testing indicated high RAP 

mixtures containing 50% RAP would likely have comparable durability performance to 
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current practice low RAP content highway surface mixtures; 75% RAP mixtures may 

have slightly higher potential for durability problems.  Tensile strength of 50% RAP 

mixes was comparable to current practice mixtures, but tensile strength of 75% RAP 

mixtures was higher than current practice.  High RAP mixtures had similar or better rut 

resistance than current practice.  PURWheel wet test data for 50% RAP mixtures 

indicated a slightly higher potential for moisture damage than current mixtures.  Mixtures 

with 75% RAP had poor laboratory mixing efficiency as many un-coated coarse 

aggregate particles were seen; this may lead to moisture damage. 

 
 

11.2 Conclusions 

Based on laboratory testing, the overall conclusions of this research are that: 1) 

RAP can be characterized to better understand its absorbed, inert and effective 

bituminous components; 2) use of moderate to high RAP contents (up to 25%) with warm 

mix technologies in airfield surface mixtures is likely feasible; 3) use of 25% RAP 

contents with warm mix technologies in highway surface mixtures is feasible and 

recommended for immediate implementation in Mississippi but 50% RAP requires 

further investigation; and 4) use of 50% RAP contents in highway base mixtures is to be  

feasible from a performance standpoint but use of 75% RAP is not recommended.  

Specific conclusions are presented in the following list. 

• RAP aggregate does not absorb additional asphalt.  Measurement of RAP Gse can 

be effectively performed using RAP coated with 2% virgin binder. 

• Determination of RAP absorbed asphalt by extracted aggregate Gsb with current 

techniques was shown to give unreasonable results.  More reasonable estimates for 
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RAP sources from a single pavement can be made using measured RAP Gse and the 

regression equation developed in this dissertation. 

• Compaction temperature can have a relatively large effect on RAP virgin asphalt 

demand as considerably more virgin asphalt is required at WMA temperatures than 

at HMA temperatures in some instances; the effect magnitude is dependent on RAP 

source.  Varying compactive effort causes approximately the same relative change 

in virgin asphalt demand by RAP as it does in conventional mixtures.  RAP bitumen 

on the surface of RAP aggregate is not all effective under some conditions. 

• For airfield surface mixtures, the measured increase in high temperature grade of 

the binder when RAP was added to the mixes was noticeably higher than the 

measured increase in low temperature grade.  This indicates generally improved rut 

resistance of high RAP content mixes but only a limited increase in thermal 

cracking susceptibility.  WMA technology can be used with high RAP content to 

produce mixtures that will be resistant to rutting.  The binder will be stiffer for the 

high RAP contents greatly reducing the potential for rutting.  Mixtures with high 

RAP content appear to be slightly more susceptible to thermal cracking.  The high 

RAP content stiffens the asphalt binder, slightly increasing the low temperature 

grade of the asphalt. 

• The Cantabro test was found useful for relative performance measurement of 

mixture durability.  Air voids were observed to have an effect on mass loss; 

controlling specimen air voids reduced test method variability but did not change 

the conclusions.  Durability testing of aged specimens indicated high RAP mixes 

may be somewhat more prone to durability issues over time than control mixtures. 
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• For high RAP airfield surface mixtures the Cantabro test indicated a potential for 

decreased durability but further testing is needed.  For highway surface mixtures, 

durability testing without aging indicated that 25% RAP mixes were comparable to 

current practice and performance of 50% RAP mixes was not dramatically worse 

than control mixes.  Durability testing of highway base mixtures indicated that 50% 

RAP mixes were comparable to current practice. 

• The BBR mixture test performed on small specimens was found useful for 

assessment of mixture stiffness at low temperatures.  BBR data and indirect tensile 

testing were successfully used to conduct thermal cracking analysis. 

• For highway surface mixtures, BBR mixture stiffness testing at temperatures 

bracketing the low PG temperature of virgin Mississippi materials (-22 C) indicated 

high RAP-WMA mixes performed within the range of 50 and 85 gyration control 

mixes.  Mixture stiffness testing at temperatures slightly above the low PG 

temperature showed a relatively small increase in stiffness for 25% RAP mixes 

compared to controls and moderate increase in stiffness for 50% RAP mixes.  

Thermal cracking analysis indicated similar performance of 25% RAP mixes to 

current practice. 

• PURWheel dry protocol testing at 64 C provided the same relative ranking of 

mixtures as did the APA test method although the magnitude of rutting in the 

PURWheel was higher. 

• Rut testing in both the APA and PURWheel dry protocol indicated that high RAP-

WMA mixes are highly rut resistant and were comparable to 85 gyration control 

mixes in most cases.  For highway surface mixtures, 50% of some RAP sources can 
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provide rut resistance equal to 85 gyration PG 76-22 mixtures; however not all RAP 

sources can necessarily provide this level of performance. 

• 65 design gyration high RAP mixes balanced rut and crack resistance effectively. 

• TSR testing of high RAP mixes did not indicate any potential for moisture damage 

in highway mixes and also indicated good performance of high RAP airfield mixes. 

• Testing of submerged specimens at 64 C in the PURWheel wet protocol test was an 

aggressive test method that allowed relative moisture damage performance ranking. 

• PURWheel wet protocol testing indicated the potential for moisture damage in 

control and high RAP-WMA highway mixes, whereas TSR testing did not. 

• Laboratory compactability analysis did not indicate problems with high RAP mixes. 

 
 

11.3 Recommendations for Implementation 

Until further information becomes available, it is recommended to design high 

RAP with warm mix technologies as moderate compactive effort (65 gyration) mixes.  

This report indicated that this type of design should balance rut and crack resistance as 

the stiff RAP binder can offset the additional virgin binder in terms of rut resistance and 

the additional virgin binder can help to offset the stiff RAP binder in terms of crack 

resistance.  Use of 75% RAP base mixtures is not recommended due to inability to 

adequately coat virgin coarse aggregate. 
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11.4 Recommendations for Further Research 

• Test multiple RAP sources in the manner described in Chapter 5 and compare the 

results to conventional methods.  A key component of the investigation should be 

absorbed asphalt and Gsb. 

• The use of high RAP in airfield surface mixtures needs further investigation due to 

higher tire pressures and FOD associated durability problems.  Durability and 

moisture damage wheel tracking should be performed. 

• Produce 25% RAP mix at full scale and place on surface of low volume roadway 

for monitoring.  Samples of the raw materials and plant produced mix should be 

sampled for laboratory testing similar to that conducted in this study.  Properties of 

the pavement sampled mixture and should be tested as a function of time. 

• Compare moisture resistance in a wheel tracking test for aggregate gradations 

designed with hot and warm mixed protocols. 

• Moisture damage of warm mixed RAP should be should be compared to hot mixed 

RAP after multiple aging durations. 

• Use of 50% RAP in base mixtures needs further investigation; especially fatigue 

crack resistance.  Limited data in this study and several literature sources indicated 

that crack resistance may not be a major problem but further study is needed. 
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Table A.1 PURWheel Dry Test Results for Mixture 9.5-100/RM-1 
 

Replicate 1 (Air Voids 9.5%) Replicate 2 (Air Voids 9.8%) 
Left Specimen (mm) Right Specimen (mm) Left Specimen (mm) Right Specimen (mm) 
Pass Adj. Rut Pass Adj. Rut Pass Adj. Rut Pass Adj. Rut 
250 0.7 250 1.1 250 0.5 250 0.7 
500 1.1 500 1.2 500 0.8 500 1.2 
1000 1.5 1000 2.0 1000 1.1 1000 1.8 
2000 1.9 2000 2.3 2000 1.5 2000 2.3 
4000 2.3 4000 3.0 4000 1.9 4000 3.0 
8000 2.9 8000 3.5 8000 2.4 8000 3.7 
12000 3.6 12000 3.9 12000 2.7 12000 4.4 
16000 4.0 16000 4.1 16000 3.0 16000 4.8 
20000 4.4 (6.3)1 20000 5.0 (5.0)1 20000 3.3 (4.4)1 20000 5.3 (4.3)1

1:  Value in bold in parentheses is manual measurement. If dashes are present rut was too deep to measure. 
Test Temperature: 64 C Tire Pressure: 862 kPa Wheel Load: 178.6 kg 

 
 
 
 

  
        a)  Data Replicate 1    b)  Data Replicate 2 

 
 
 
 
 
 
 
 

 

        c)  Photo Replicate 1    d)  Photo Replicate 2 

 
Figure A.1 PURWheel Dry Test Results for Mixture 9.5-100/RM-1 
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Table A.2 PURWheel Wet Test Results for Mixture 9.5-100/RM-1 
 

Replicate 1 (Air Voids 9.8%) Replicate 2 (Air Voids 11.3%) 
Left Specimen (mm) Right Specimen (mm) Left Specimen (mm) Right Specimen (mm) 
Pass Adj. Rut Pass Adj. Rut Pass Adj. Rut Pass Adj. Rut 
250 0.5 250 0.9 250 0.8 250 0.7 
500 1.7 500 1.7 500 1.6 500 1.4 
1000 2.6 1000 2.6 1000 2.9 1000 2.2 
2000 3.3 2000 3.2 2000 4.4 2000 2.8 
4000 5.0 4000 5.0 4000 6.1 4000 4.1 
8000 10.1 8000 8.9 8000 9.5 8000 6.0 
10620 23.5 (---)1 12000 20.3 12000 12.7 12000 7.8 
--- --- 12314 21.8 (---)1 16000 20.4 16000 9.0 
--- --- --- --- 17312 26.1 (20.0)1 20000 10.3 (9.7)1

1:  Value in bold in parentheses is manual measurement. If dashes are present rut was too deep to measure. 
Test Temperature: 64 C Tire Pressure: 862 kPa Wheel Load: 178.6 kg 

 
 
 
 

  
        a)  Data Replicate 1    b)  Data Replicate 2 

 
 
 
 
 
 
 
 
 
 
 
        c)  Photo Replicate 1    d)  Photo Replicate 2 

 
Figure A.2 PURWheel Wet Test Results for Mixture 9.5-100/RM-1 
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Table A.3 PURWheel Dry Test Results for Mixture 9.5-100/RM-2 
 

Replicate 1 (Air Voids 10.0%) Replicate 2 (Air Voids 9.6%) 
Left Specimen (mm) Right Specimen (mm) Left Specimen (mm) Right Specimen (mm) 
Pass Adj. Rut Pass Adj. Rut Pass Adj. Rut Pass Adj. Rut 
250 0.8 250 0.5 250 0.3 250 0.5 
500 1.3 500 0.6 500 0.8 500 0.9 
1000 2.0 1000 1.8 1000 1.2 1000 1.3 
2000 2.7 2000 2.2 2000 1.7 2000 1.8 
4000 3.8 4000 3.5 4000 2.4 4000 2.5 
8000 5.2 8000 4.1 8000 3.5 8000 3.4 
12000 6.1 12000 5.5 12000 4.3 12000 4.3 
16000 6.9 16000 5.7 16000 4.9 16000 4.9 
20000 8.7 (8.8)1 20000 7.1 (6.7)1 20000 5.2 (6.4)1 20000 5.4 (7.9)1

1:  Value in bold in parentheses is manual measurement. If dashes are present rut was too deep to measure. 
Test Temperature: 64 C Tire Pressure: 862 kPa Wheel Load: 178.6 kg 

 
 
 
 

  
        a)  Data Replicate 1    b)  Data Replicate 2 

 
 
 
 
 
 
 
 
 
 
 
        c)  Photo Replicate 1    d)  Photo Replicate 2 

 
Figure A.3 PURWheel Dry Test Results for Mixture 9.5-100/RM-2 
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Table A.4 PURWheel Wet Test Results for Mixture 9.5-100/RM-2 
 

Replicate 1 (Air Voids 8.8%) Replicate 2 (Air Voids 10.6%) 
Left Specimen (mm) Right Specimen (mm) Left Specimen (mm) Right Specimen (mm) 
Pass Adj. Rut Pass Adj. Rut Pass Adj. Rut Pass Adj. Rut 
250 0.7 250 0.3 250 0.9 250 0.7 
500 1.4 500 0.7 500 1.9 500 1.4 
1000 2.0 1000 1.5 1000 2.6 1000 2.1 
2000 2.9 2000 2.2 2000 3.9 2000 3.3 
4000 4.1 4000 3.8 4000 5.6 4000 5.1 
8000 5.7 8000 6.6 8000 8.3 8000 9.9 
12000 6.9 12000 8.9 12000 10.1 11490 19.8 (---)1 
16000 7.9 16000 11.4 16000 11.8 --- --- 
20000 8.8 (8.3)1 16412 11.7 (11.5)1 20000 13.3 (9.5)1 --- ---

1:  Value in bold in parentheses is manual measurement. If dashes are present rut was too deep to measure. 
Test Temperature: 64 C Tire Pressure: 862 kPa Wheel Load: 178.6 kg 

 
 
 
 

  
       a)  Data Replicate 1    b)  Data Replicate 2 

 
 
 
 
 
 
 
 
 
 
     c)  Photo Replicate 1    d)  Photo Replicate 2 

 
Figure A.4 PURWheel Wet Test Results for Mixture 9.5-100/RM-2 
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Table A.5 PURWheel Dry Test Results for Mixture 12.5-100/RM-3 
 

Replicate 1 (Air Voids 9.5%) Replicate 2 (Air Voids 11.2%) 
Left Specimen (mm) Right Specimen (mm) Left Specimen (mm) Right Specimen (mm) 
Pass Adj. Rut Pass Adj. Rut Pass Adj. Rut Pass Adj. Rut 
250 0.5 250 0.7 250 0.1 250 0.4 
500 1.1 500 1.1 500 0.4 500 0.8 
1000 1.5 1000 1.6 1000 1.1 1000 1.2 
2000 1.8 2000 2.5 2000 1.3 2000 1.7 
4000 2.2 4000 3.2 4000 1.8 4000 2.4 
8000 2.9 8000 4.0 8000 2.4 8000 2.4 
12000 3.3 12000 5.0 12000 2.8 12000 3.3 
16000 3.7 16000 5.4 16000 3.1 16000 4.2 
20000 4.1 (5.2)1 20000 5.7 (6.1)1 20000 3.4 (4.5)1 20000 5.3 (6.4)1

1: Value in bold in parentheses is manual measurement. If dashes are present rut was too deep to measure. 
Test Temperature: 64 C Tire Pressure: 862 kPa Wheel Load: 178.6 kg 

 
 
 
 

  
        a)  Data Replicate 1    b)  Data Replicate 2 

 
 
 
 
 
 
 
 
 
 
     c)  Photo Replicate 1    d)  Photo Replicate 2 

 
Figure A.5 PURWheel Dry Test Results for Mixture 12.5-100/RM-3 
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Table A.6 PURWheel Wet Test Results for Mixture 12.5-100/RM-3 
 

Replicate 1 (Air Voids 8.7%) Replicate 2 (Air Voids 11.5%) 
Left Specimen (mm) Right Specimen (mm) Left Specimen (mm) Right Specimen (mm) 
Pass Adj. Rut Pass Adj. Rut Pass Adj. Rut Pass Adj. Rut 
250 0.7 250 0.6 250 1.0 250 0.8 
500 1.1 500 1.1 500 1.9 500 1.2 
1000 1.5 1000 1.5 1000 4.0 1000 1.8 
2000 2.1 2000 1.8 2000 7.0 2000 2.8 
4000 2.9 4000 2.5 3800 29.5 (---)1 4000 10.8 
8000 4.4 8000 3.5 --- --- 4174 18.1 (---)1 
12000 5.7 12000 4.3 --- --- --- --- 
16000 9.0 16000 5.1 --- --- --- --- 
18130 16.2 (13.1)1 20000 6.2 (5.4)1 --- --- --- --- 

1:  Value in bold in parentheses is manual measurement. If dashes are present rut was too deep to measure. 
Test Temperature: 64 C Tire Pressure: 862 kPa Wheel Load: 178.6 kg 

 
 
 
 

  
        a)  Data Replicate 1    b)  Data Replicate 2 

 
 
 
 
 
 
 
 
 
 
 
     c)  Photo Replicate 1    d)  Photo Replicate 2 

 
Figure A.6 PURWheel Wet Test Results for Mixture 12.5-100/RM-3 
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Table A.7 PURWheel Dry Test Results for Mixture 9.5-15/CM-2 
 

Replicate 1 (Air Voids 9.2%) Replicate 2 (Air Voids 9.1%) 
Left Specimen (mm) Right Specimen (mm) Left Specimen (mm) Right Specimen (mm) 
Pass Adj. Rut Pass Adj. Rut Pass Adj. Rut Pass Adj. Rut 
250 4.2 250 7.0 250 4.3 250 10.9 
500 10.5 500 17.8 500 11.3 272 12.5 (18.6)1 
1000 21.7 800 29.0 (---)1 1000 22.7 --- --- 
1134 24.5 (22.9)1 --- --- 1230 27.5 (---)1 --- --- 
--- --- --- --- --- --- --- --- 
--- --- --- --- --- --- --- --- 
--- --- --- --- --- --- --- --- 
--- --- --- --- --- --- --- --- 
--- --- --- --- --- --- --- --- 

1:  Value in bold in parentheses is manual measurement. If dashes are present rut was too deep to measure. 
Test Temperature: 64 C Tire Pressure: 862 kPa Wheel Load: 178.6 kg 

 
 
 
 

  
         a)  Data Replicate 1    b)  Data Replicate 2 

 
 
 
 
 
 
 
 
 
 
 
     c)  Photo Replicate 1    d)  Photo Replicate 2 

 
Figure A.7 PURWheel Dry Test Results for Mixture 9.5-15/CM-2 
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Table A.8 PURWheel Wet Test Results for Mixture 9.5-15/CM-2 
 

Replicate 1 (Air Voids 9.1%) Replicate 2 (Air Voids 9.2%) 
Left Specimen (mm) Right Specimen (mm) Left Specimen (mm) Right Specimen (mm) 
Pass Adj. Rut Pass Adj. Rut Pass Adj. Rut Pass Adj. Rut 
250 4.0 250 5.1 250 4.8 250 6.8 
500 10.4 500 13.6 500 13.3 390 13.2 (17.5)1 
828 19.1 (18.7)1 572 16.1 (17.3)1 550 14.8 (17.6)1 --- --- 
--- --- --- --- --- --- --- --- 
--- --- --- --- --- --- --- --- 
--- --- --- --- --- --- --- --- 
--- --- --- --- --- --- --- --- 
--- --- --- --- --- --- --- --- 
--- --- --- --- --- --- --- --- 

1:  Value in bold in parentheses is manual measurement. If dashes are present rut was too deep to measure. 
Test Temperature: 64 C Tire Pressure: 862 kPa Wheel Load: 178.6 kg 

 
 
 
 

  
        a)  Data Replicate 1    b)  Data Replicate 2 

 
 
 
 
 
 
 
 
 
 
     c)  Photo Replicate 1    d)  Photo Replicate 2 

 
Figure A.8 PURWheel Wet Test Results for Mixture 9.5-15/CM-2 
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Table A.9 PURWheel Dry Test Results for Mixture 9.5-15/CM-3 
 

Replicate 1 (Air Voids 6.9%) Replicate 2 (Air Voids 8.8%) 
Left Specimen (mm) Right Specimen (mm) Left Specimen (mm) Right Specimen (mm) 
Pass Adj. Rut Pass Adj. Rut Pass Adj. Rut Pass Adj. Rut 
250 0.9 250 0.7 250 0.3 250 0.7 
500 1.4 500 1.1 500 0.6 500 1.2 
1000 1.9 1000 1.5 1000 1.1 1000 1.9 
2000 2.7 2000 2.1 2000 1.8 2000 2.7 
4000 3.6 4000 2.6 4000 2.9 4000 3.6 
8000 4.9 8000 3.1 8000 3.9 8000 4.8 
12000 5.8 12000 3.5 12000 4.6 12000 5.7 
16000 6.5 16000 3.9 16000 5.2 16000 6.4 
20000 7.0 (8.6)1 20000 4.0 (5.8)1 20000 5.6 (6.9)1 20000 7.1 (9.2)1

1:  Value in bold in parentheses is manual measurement. If dashes are present rut was too deep to measure. 
Test Temperature: 64 C Tire Pressure: 862 kPa Wheel Load: 178.6 kg 

 
 
 
 

  
        a)  Data Replicate 1    b)  Data Replicate 2 

 
 
 
 
 
 
 
 
 
 
     c)  Photo Replicate 1    d)  Photo Replicate 2 

 
Figure A.9 PURWheel Dry Test Results for Mixture 9.5-15/CM-3 
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Table A.10 PURWheel Wet Test Results for Mixture 9.5-15/CM-3 
 

Replicate 1 (Air Voids 7.0%) Replicate 2 (Air Voids 7.3%) 
Left Specimen (mm) Right Specimen (mm) Left Specimen (mm) Right Specimen (mm) 
Pass Adj. Rut Pass Adj. Rut Pass Adj. Rut Pass Adj. Rut 
250 0.9 250 0.9 250 0.7 250 0.8 
500 1.7 500 1.5 500 1.4 500 1.3 
1000 2.6 1000 2.0 1000 1.5 1000 1.9 
2000 3.9 2000 3.2 2000 2.1 2000 2.6 
4000 5.8 4000 5.2 4000 3.0 4000 3.4 
8000 14.5 8000 9.6 8000 8.2 8000 4.5 
8782 22.2 (---)1 12000 23.0 12000 8.7 12000 5.4 
--- --- 12020 23.2 (---)1 16000 9.2 16000 7.0 
--- --- --- --- 20000 9.7 (6.1)1 20000 10.0 (11.7)1

1:  Value in bold in parentheses is manual measurement. If dashes are present rut was too deep to measure. 
Test Temperature: 64 C Tire Pressure: 862 kPa Wheel Load: 178.6 kg 

 
 
 
 

  
       a)  Data Replicate 1    b)  Data Replicate 2 

 
 
 
 
 
 
 
 
 
 
 
     c)  Photo Replicate 1    d)  Photo Replicate 2 

 
Figure A.10 PURWheel Wet Test Results for Mixture 9.5-15/CM-3 
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Table A.11 PURWheel Dry Test Results for Mixture 9.5-15/CM-4a 
 

Replicate 1 (Air Voids 8.0%) Replicate 2 (Air Voids 11.5%) 
Left Specimen (mm) Right Specimen (mm) Left Specimen (mm) Right Specimen (mm) 
Pass Adj. Rut Pass Adj. Rut Pass Adj. Rut Pass Adj. Rut 
250 0.7 250 0.7 250 0.8 250 1.0 
500 1.3 500 1.4 500 1.8 500 1.7 
1000 1.7 1000 2.4 1000 2.7 1000 2.5 
2000 2.1 2000 2.8 2000 2.6 2000 3.3 
4000 2.6 4000 3.0 4000 3.9 4000 5.2 
8000 3.2 8000 3.9 8000 5.2 8000 7.4 
12000 3.5 12000 4.6 12000 5.9 12000 8.8 
16000 3.8 16000 5.4 16000 6.5 16000 10.0 
20000 4.2 (5.2)1 20000 6.0 (5.9)1 20000 7.3 (10.4)1 20000 11.0 (10.2)1

1:  Value in bold in parentheses is manual measurement. If dashes are present rut was too deep to measure. 
Test Temperature: 64 C Tire Pressure: 862 kPa Wheel Load: 178.6 kg 

 
 
 
 

  
        a)  Data Replicate 1    b)  Data Replicate 2 

 
 
 
 
 
 
 
 
 
 
     c)  Photo Replicate 1    d)  Photo Replicate 2 

 
Figure A.11 PURWheel Dry Test Results for Mixture 9.5-15/CM-4a 
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Table A.12 PURWheel Wet Test Results for Mixture 9.5-15/CM-4a 
 

Replicate 1 (Air Voids 7.4%) Replicate 2 (Air Voids 4.8%) 
Left Specimen (mm) Right Specimen (mm) Left Specimen (mm) Right Specimen (mm) 
Pass Adj. Rut Pass Adj. Rut Pass Adj. Rut Pass Adj. Rut 
250 1.0 250 0.5 250 1.0 250 0.5 
500 1.6 500 0.9 500 1.9 500 1.0 
1000 2.0 1000 1.1 1000 2.3 1000 1.6 
2000 2.8 2000 1.3 2000 2.9 2000 2.0 
4000 3.9 4000 1.7 4000 3.8 4000 4.9 
8000 4.7 8000 2.1 8000 4.8 6978 21.0 (---)1 
12000 5.1 12000 2.5 12000 5.7 --- --- 
16000 5.5 16000 3.0 16000 7.3 --- --- 
20000 5.8 (5.1)1 20000 3.6 (6.3)1 20000 7.9 (6.1)1 --- --- 

1:  Value in bold in parentheses is manual measurement. If dashes are present rut was too deep to measure. 
Test Temperature: 64 C Tire Pressure: 862 kPa Wheel Load: 178.6 kg 

 
 
 
 

  
        a)  Data Replicate 1    b)  Data Replicate 2 

 
 
 
 
 
 
 
 
 
 
 
     c)  Photo Replicate 1    d)  Photo Replicate 2 

 
Figure A.12 PURWheel Wet Test Results for Mixture 9.5-15/CM-4a 
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Table A.13 PURWheel Dry Test Results for Mixture 9.5-15/CM-4b 
 

Replicate 1 (Air Voids 10.8%) 
Left Specimen (mm) Right Specimen (mm) 
Pass Adj. Rut Pass Adj. Rut 
250 1.1 250 1.3 
500 1.9 500 2.4 
1000 2.8 1000 3.3 
2000 4.0 2000 5.5 
4000 5.4 4000 7.0 
8000 7.4 8000 10.1 
12000 9.0 12000 13.2 
16000 10.3 16000 15.7 
20000 11.7 (13.1)1 20000 17.8 (15.1)1

1:  Value in bold in parentheses is manual measurement. If dashes are present rut was too deep to measure. 
Test Temperature: 64 C Tire Pressure: 862 kPa Wheel Load: 178.6 kg 

 
 
 
 

  
       a)  Data Replicate 1  

 
 
 
 
 
 
 
 
 
 
 
     b)  Photo Replicate 1  

 
Figure A.13 PURWheel Dry Test Results for Mixture 9.5-15/CM-4b 
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Table A.14 PURWheel Wet Test Results for Mixture 9.5-15/CM-4b 
 

Replicate 1 (Air Voids 10.7%) 
Left Specimen (mm) Right Specimen (mm) 
Pass Adj. Rut Pass Adj. Rut 
250 2.3 250 0.8 
500 4.4 500 1.5 
1000 7.1 1000 2.3 
2000 17.3 2000 3.6 
2214 23.8 (16.3)1 4000 8.5 
--- --- 5490 22.0 (---)1 
--- --- --- --- 
--- --- --- --- 
--- --- --- --- 

1:  Value in bold in parentheses is manual measurement. If dashes are present rut was too deep to measure. 
Test Temperature: 64 C Tire Pressure: 862 kPa Wheel Load: 178.6 kg 

 
 
 
 

  
       a)  Data Replicate 1  

 
 
 
 
 
 
 
 
 
 
 
     b)  Photo Replicate 1  

 
Figure A.14 PURWheel Wet Test Results for Mixture 9.5-15/CM-4b 
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Table A.15 PURWheel Dry Test Results for Mixture 9.5-15/CM-4c 
 

Replicate 1 (Air Voids 11.2%) 
Left Specimen (mm) Right Specimen (mm) 
Pass Adj. Rut Pass Adj. Rut 
250 0.8 250 0.9 
500 1.4 500 1.6 
1000 1.9 1000 2.2 
2000 2.4 2000 2.7 
4000 3.0 4000 3.5 
8000 3.7 8000 4.3 
12000 4.2 12000 4.8 
16000 4.5 16000 5.2 
20000 4.8 (5.5)1 20000 5.5 (6.3)1

1:  Value in bold in parentheses is manual measurement. If dashes are present rut was too deep to measure. 
Test Temperature: 64 C Tire Pressure: 862 kPa Wheel Load: 178.6 kg 

 
 
 
 

  
        a)  Data Replicate 1  

 
 
 
 
 
 
 
 
 
 
 
     b)  Photo Replicate 1  

 
Figure A.15 PURWheel Dry Test Results for Mixture 9.5-15/CM-4c 
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Table A.16 PURWheel Wet Test Results for Mixture 9.5-15/CM-4c 
 

Replicate 1 (Air Voids 10.7%) 
Left Specimen (mm) Right Specimen (mm) 
Pass Adj. Rut Pass Adj. Rut 
250 1.3 250 0.7 
500 2.1 500 1.0 
1000 2.8 1000 1.4 
2000 4.0 2000 1.7 
4000 5.8 4000 2.3 
8000 9.6 8000 3.1 
11842 23.0 (---)1 12000 3.9 
--- --- 16000 5.6 
--- --- 20000 8.7 (13.7)1

1:  Value in bold in parentheses is manual measurement. If dashes are present rut was too deep to measure. 
Test Temperature: 64 C Tire Pressure: 862 kPa Wheel Load: 178.6 kg 

 
 
 
 

  
       a)  Data Replicate 1  

 
 
 
 
 
 
 
 
 
 
 
     b)  Photo Replicate 1  

 
Figure A.16 PURWheel Wet Test Results for Mixture 9.5-15/CM-4c 
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Table A.17 PURWheel Dry Test Results for Mixture 9.5-25/RM-1 
 

Replicate 1 (Air Voids 10.3%) Replicate 2 (Air Voids 9.0%) 
Left Specimen (mm) Right Specimen (mm) Left Specimen (mm) Right Specimen (mm) 
Pass Adj. Rut Pass Adj. Rut Pass Adj. Rut Pass Adj. Rut 
250 0.8 250 0.8 250 0.8 250 0.5 
500 1.6 500 1.0 500 1.6 500 0.9 
1000 2.5 1000 1.7 1000 2.2 1000 1.3 
2000 3.6 2000 2.3 2000 2.9 2000 2.1 
4000 5.3 4000 3.5 4000 4.0 4000 2.8 
8000 7.8 8000 5.2 8000 5.4 6978 3.8 
12000 10.2 12000 6.5 12000 6.6 12000 4.6 
16000 12.3 16000 8.2 16000 7.7 16000 5.3 
20000 14.3(13.9)1 20000 9.1 (9.5)1 20000 8.5 (10.2)1 20000 6.0 (7.2)1

1:  Value in bold in parentheses is manual measurement. If dashes are present rut was too deep to measure. 
Test Temperature: 64 C Tire Pressure: 862 kPa Wheel Load: 178.6 kg 

 
 
 
 

  
       a)  Data Replicate 1    b)  Data Replicate 2 

 
 
 
 
 
 
 
 
 
 
     c)  Photo Replicate 1    d)  Photo Replicate 2 

 
Figure A.17 PURWheel Dry Test Results for Mixture 9.5-25/RM-1 
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Table A.18 PURWheel Wet Test Results for Mixture 9.5-25/RM-1 
 

Replicate 1 (Air Voids 9.5%) Replicate 2 (Air Voids 9.1%) 
Left Specimen (mm) Right Specimen (mm) Left Specimen (mm) Right Specimen (mm) 
Pass Adj. Rut Pass Adj. Rut Pass Adj. Rut Pass Adj. Rut 
250 0.9 250 0.6 250 0.6 250 0.8 
500 1.7 500 1.2 500 1.2 500 1.3 
1000 2.4 1000 2.1 1000 1.9 1000 2.0 
2000 3.8 2000 3.1 2000 2.8 2000 2.9 
4000 5.8 4000 4.6 4000 4.2 4000 4.1 
8000 11.1 8000 7.9 8000 6.8 6978 5.9 
11232 21.2(18.2)1 12000 12.0 12000 9.7 12000 8.7 
--- --- 16000 23.5 16000 16.8 16000 13.5 
--- --- 16022 23.7 (22.1)1 16766 27.4 (---)1 18452 25.0 (---)1

1:  Value in bold in parentheses is manual measurement. If dashes are present rut was too deep to measure. 
Test Temperature: 64 C Tire Pressure: 862 kPa Wheel Load: 178.6 kg 

 
 
 
 

  
      a)  Data Replicate 1    b)  Data Replicate 2 

 
 
 
 
 
 
 
 
 
 
 
     c)  Photo Replicate 1    d)  Photo Replicate 2 

 
Figure A.18 PURWheel Wet Test Results for Mixture 9.5-25/RM-1 
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Table A.19 PURWheel Dry Test Results for Mixture 9.5-25/RM-2 
 

Replicate 1 (Air Voids 7.0%) Replicate 2 (Air Voids 10.4%) 
Left Specimen (mm) Right Specimen (mm) Left Specimen (mm) Right Specimen (mm) 
Pass Adj. Rut Pass Adj. Rut Pass Adj. Rut Pass Adj. Rut 
250 1.1 250 0.8 250 0.6 250 1.3 
500 2.0 500 1.7 500 1.2 500 2.2 
1000 3.2 1000 2.5 1000 1.7 1000 3.2 
2000 4.6 2000 3.3 2000 2.2 2000 4.3 
4000 6.5 4000 4.1 4000 3.0 4000 5.7 
8000 9.2 8000 5.3 8000 3.9 6978 7.5 
12000 11.3 12000 6.2 12000 4.4 12000 8.9 
16000 13.4 16000 6.9 16000 4.9 16000 10.1 
20000 15.7 (15.9)1 20000 7.6 (7.9)1 20000 5.4 (5.8)1 20000 11.0 (---)1

1:  Value in bold in parentheses is manual measurement. If dashes are present rut was not measured. 
Test Temperature: 64 C Tire Pressure: 862 kPa Wheel Load: 178.6 kg 

 
 
 
 

 
       a)  Data Replicate 1    b)  Data Replicate 2 

 
 
 
 
 
 
 
 
 
 
     c)  Photo Replicate 1    d)  Photo Replicate 2 

 
Figure A.19 PURWheel Dry Test Results for Mixture 9.5-25/RM-2 
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Table A.20 PURWheel Wet Test Results for Mixture 9.5-25/RM-2 
 

Replicate 1 (Air Voids 9.1%) Replicate 2 (Air Voids 8.9%) 
Left Specimen (mm) Right Specimen (mm) Left Specimen (mm) Right Specimen (mm) 
Pass Adj. Rut Pass Adj. Rut Pass Adj. Rut Pass Adj. Rut 
250 1.2 250 0.8 250 1.0 250 0.8 
500 2.3 500 1.5 500 2.0 500 1.4 
1000 3.7 1000 2.4 1000 2.9 1000 2.2 
2000 6.1 2000 3.7 2000 4.7 2000 3.2 
4000 14.0 4000 8.5 4000 9.5 4000 4.5 
4660 21.5 (20.8)1 6066 22.0 (---)1 6342 24.0 (---)1 6978 6.7 
--- --- --- --- --- --- 12000 8.1 
--- --- --- --- --- --- 16000 11.1 
--- --- --- --- --- --- 20000 13.6 (13.8)1

1:  Value in bold in parentheses is manual measurement. If dashes are present rut was too deep to measure. 
Test Temperature: 64 C Tire Pressure: 862 kPa Wheel Load: 178.6 kg 

 
 
 
 

  
        a)  Data Replicate 1    b)  Data Replicate 2 

 
 
 
 
 
 
 
 
 
 
 
     c)  Photo Replicate 1    d)  Photo Replicate 2 

 
Figure A.20 PURWheel Wet Test Results for Mixture 9.5-25/RM-2 
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Table A.21 PURWheel Dry Test Results for Mixture 9.5-50/RM-1 
 

Replicate 1 (Air Voids 8.1%) Replicate 2 (Air Voids 8.7%) 
Left Specimen (mm) Right Specimen (mm) Left Specimen (mm) Right Specimen (mm) 
Pass Adj. Rut Pass Adj. Rut Pass Adj. Rut Pass Adj. Rut 
250 0.5 250 0.4 250 0.6 250 0.5 
500 0.8 500 0.8 500 1.1 500 0.9 
1000 1.1 1000 1.1 1000 1.5 1000 1.1 
2000 1.5 2000 1.4 2000 2.1 2000 1.2 
4000 1.9 4000 1.6 4000 2.6 4000 1.6 
8000 2.2 8000 2.0 8000 3.3 6978 2.2 
12000 2.4 12000 2.1 12000 3.5 12000 2.8 
16000 2.7 16000 2.3 16000 3.8 16000 2.9 
20000 2.7(3.3)1 20000 2.4 (3.4)1 20000 3.9 (5.3)1 20000 2.9 (4.0)1

1:  Value in bold in parentheses is manual measurement. If dashes are present rut was too deep to measure. 
Test Temperature: 64 C Tire Pressure: 862 kPa Wheel Load: 178.6 kg 

 
 
 
 

  
      a)  Data Replicate 1    b)  Data Replicate 2 

 
 
 
 
 
 
 
 
 
 
     c)  Photo Replicate 1    d)  Photo Replicate 2 

 
Figure A.21 PURWheel Dry Test Results for Mixture 9.5-50/RM-1 
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Table A.22 PURWheel Wet Test Results for Mixture 9.5-50/RM-1 
 

Replicate 1 (Air Voids 8.2%) Replicate 2 (Air Voids 8.3%) 
Left Specimen (mm) Right Specimen (mm) Left Specimen (mm) Right Specimen (mm) 
Pass Adj. Rut Pass Adj. Rut Pass Adj. Rut Pass Adj. Rut 
250 0.5 250 0.5 250 0.8 250 0.5 
500 0.9 500 1.0 500 1.3 500 0.9 
1000 1.5 1000 1.5 1000 1.9 1000 1.3 
2000 2.3 2000 2.2 2000 2.7 2000 1.7 
4000 3.2 4000 3.4 4000 3.8 4000 2.3 
8000 5.1 8000 5.7 8000 8.7 6978 3.0 
12000 11.7 12000 10.3 10238 24.6 (---)1 12000 3.4 
14690 23.7(---)1 16000 16.8 --- --- 16000 3.9 
--- --- 18360 23.0 (20.2)1 --- --- 20000 4.3 (4.8)1

1:  Value in bold in parentheses is manual measurement. If dashes are present rut was too deep to measure. 
Test Temperature: 64 C Tire Pressure: 862 kPa Wheel Load: 178.6 kg 

 
 
 
 

  
        a)  Data Replicate 1    b)  Data Replicate 2 

 
 
 
 
 
 
 
 
 
 
 
     c)  Photo Replicate 1    d)  Photo Replicate 2 

 
Figure A.22 PURWheel Wet Test Results for Mixture 9.5-50/RM-1 
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Table A.23 PURWheel Dry Test Results for Mixture 9.5-50/RM-2 
 

Replicate 1 (Air Voids 6.4%) Replicate 2 (Air Voids 8.0%) 
Left Specimen (mm) Right Specimen (mm) Left Specimen (mm) Right Specimen (mm) 
Pass Adj. Rut Pass Adj. Rut Pass Adj. Rut Pass Adj. Rut 
250 0.8 250 0.7 250 0.7 250 0.9 
500 1.5 500 1.2 500 1.2 500 1.7 
1000 2.2 1000 1.6 1000 1.7 1000 2.5 
2000 2.8 2000 2.1 2000 2.3 2000 3.4 
4000 3.6 4000 2.8 4000 3.1 4000 4.4 
8000 5.0 8000 3.7 8000 4.1 6978 6.1 
12000 6.0 12000 4.4 12000 4.9 12000 7.5 
16000 6.8 16000 4.9 16000 5.6 16000 8.7 
20000 7.6 (9.1)1 20000 5.5 (6.3)1 20000 6.1 (7.5)1 20000 9.8 (10.1)1

1:  Value in bold in parentheses is manual measurement. If dashes are present rut was too deep to measure. 
Test Temperature: 64 C Tire Pressure: 862 kPa Wheel Load: 178.6 kg 

 
 
 
 

  
         a)  Data Replicate 1    b)  Data Replicate 2 

 
 
 
 
 
 
 
 
 
 
 
     c)  Photo Replicate 1    d)  Photo Replicate 2 

 
Figure A.23 PURWheel Dry Test Results for Mixture 9.5-50/RM-2 

y = 0.0865x0.4515

R² = 0.94

y = 0.0859x0.4194

R² = 0.94

0

2

4

6

8

10

0 5000 10000 15000 20000

A
dj

us
te

d 
R

ut
 D

ep
th

 (m
m

)

Passes

Left
Right

y = 0.0735x0.4484

R² = 0.94

y = 0.0855x0.4767

R² = 0.95

0

2

4

6

8

10

0 5000 10000 15000 20000

A
dj

us
te

d 
R

ut
 D

ep
th

 (m
m

)

Passes

Left

Right

Left Replicate 2 Left Replicate 1 



www.manaraa.com

396 

Table A.24 PURWheel Wet Test Results for Mixture 9.5-50/RM-2 
 

Replicate 1 (Air Voids 6.7%) Replicate 2 (Air Voids 7.6%) 
Left Specimen (mm) Right Specimen (mm) Left Specimen (mm) Right Specimen (mm) 
Pass Adj. Rut Pass Adj. Rut Pass Adj. Rut Pass Adj. Rut 
250 0.7 250 1.0 250 0.7 250 0.2 
500 1.3 500 1.6 500 1.4 500 0.9 
1000 1.9 1000 2.5 1000 2.0 1000 1.2 
2000 2.6 2000 3.2 2000 3.1 2000 1.6 
4000 3.6 4000 4.7 4000 5.0 4000 2.3 
8000 7.3 8000 10.3 8000 12.7 6978 2.9 
12000 13.1 9526 18.4 (---)1 8774 24.0 (---)1 12000 4.0 
14406 24.1(22.4)1 --- --- --- --- 16000 7.6 
--- --- --- --- --- --- 18012 9.2 (10.7)1

1:  Value in bold in parentheses is manual measurement. If dashes are present rut was too deep to measure. 
Test Temperature: 64 C Tire Pressure: 862 kPa Wheel Load: 178.6 kg 

 
 
 
 

  
      a)  Data Replicate 1    b)  Data Replicate 2 

 
 
 
 
 
 
 
 
 
 
 
     c)  Photo Replicate 1    d)  Photo Replicate 2 

 
Figure A.24 PURWheel Wet Test Results for Mixture 9.5-50/RM-2 
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Table A.25 PURWheel Dry Test Results for Mixture 12.5-15/CM-1 
 

Replicate 1 (Air Voids 7.0%) Replicate 2 (Air Voids 7.1%) 
Left Specimen (mm) Right Specimen (mm) Left Specimen (mm) Right Specimen (mm) 
Pass Adj. Rut Pass Adj. Rut Pass Adj. Rut Pass Adj. Rut 
250 1.3 250 1.3 250 1.2 250 1.1 
500 2.3 500 2.5 500 2.5 500 2.1 
1000 3.8 1000 3.9 1000 4.3 1000 3.3 
2000 6.1 2000 6.0 2000 7.3 2000 5.1 
4000 10.9 4000 9.8 4000 13.8 4000 8.3 
8000 21.6 7760 18.5 (16.1)1 6618 23.4 (22.5)1 8000 14.7 
8084 21.9 (20.9)1 --- --- --- --- 10982 18.5 (18.8)1 
--- --- --- --- --- --- --- --- 
--- --- --- --- --- --- --- --- 

1:  Value in bold in parentheses is manual measurement. If dashes are present rut was too deep to measure. 
Test Temperature: 64 C Tire Pressure: 862 kPa Wheel Load: 178.6 kg 

 
 
 
 

 
      a)  Data Replicate 1    b)  Data Replicate 2 

 

          
     c)  Photo Replicate 1    d)  Photo Replicate 2 

 
Figure A.25 PURWheel Dry Test Results for Mixture 12.5-15/CM-1 
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Table A.26 PURWheel Wet Test Results for Mixture 12.5-15/CM-1 
 

Replicate 1 (Air Voids 6.6%) Replicate 2 (Air Voids 6.6%) 
Left Specimen (mm) Right Specimen (mm) Left Specimen (mm) Right Specimen (mm) 
Pass Adj. Rut Pass Adj. Rut Pass Adj. Rut Pass Adj. Rut 
250 1.2 250 1.1 250 1.2 250 1.5 
500 2.6 500 2.2 500 2.7 500 2.9 
1000 4.4 1000 3.7 1000 4.9 1000 4.5 
2000 7.6 2000 5.9 2000 8.7 2000 7.4 
4000 15.3 4000 10.5 4000 19.6 4000 14.9 
5018 24.7 (22.6)1 7046 23.6 (20.7)1 4294 22.3 (20.1)1 4560 18.8 (17.6)1 
--- --- --- --- --- --- --- --- 
--- --- --- --- --- --- --- --- 
--- --- --- --- --- --- --- --- 

1:  Value in bold in parentheses is manual measurement. If dashes are present rut was too deep to measure. 
Test Temperature: 64 C Tire Pressure: 862 kPa Wheel Load: 178.6 kg 

 
 
 
 

 
      a)  Data Replicate 1    b)  Data Replicate 2 

           
     c)  Photo Replicate 1    d)  Photo Replicate 2 

 
Figure A.26 PURWheel Wet Test Results for Mixture 12.5-15/CM-1 
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Table A.27 PURWheel Dry Test Results for Mixture 12.5-15/CM-2 
 

Replicate 1 (Air Voids 5.9%) 
Left Specimen (mm) Right Specimen (mm) 
Pass Adj. Rut Pass Adj. Rut 
250 0.9 250 0.8 
500 1.4 500 1.5 
1000 2.1 1000 1.9 
2000 2.8 2000 2.0 
4000 3.7 4000 3.2 
8000 4.9 8000 4.1 
12000 5.8 12000 4.7 
16000 6.5 16000 4.5 
20000 7.1 (8.6)1 20000 5.4 (6.8)1 

1:  Value in bold in parentheses is manual measurement. If dashes are present rut was too deep to measure. 
Test Temperature: 64 C Tire Pressure: 862 kPa Wheel Load: 178.6 kg 

 
 
 
 

  
       a)  Data Replicate 1  

 

    

      b)  Photo Replicate 1  

 
Figure A.27 PURWheel Dry Test Results for Mixture 12.5-15/CM-2 
 

y = 0.1018x0.431

R² = 0.94

y = 0.1260x0.378

R² = 0.96

0

2

4

6

8

10

0 5000 10000 15000 20000

A
dj

us
te

d 
R

ut
 D

ep
th

 (m
m

)

Passes

Left

Right

Left Replicate 1 



www.manaraa.com

400 

Table A.28 PURWheel Wet Test Results for Mixture 12.5-15/CM-2 
 

Replicate 1 (Air Voids 10.9%) 
Left Specimen (mm) Right Specimen (mm) 
Pass Adj. Rut Pass Adj. Rut 
250 1.5 250 0.0 
500 2.8 500 0.5 
1000 4.4 1000 0.9 
2000 7.3 2000 1.3 
4000 15.4 4000 2.1 
4476 18.0 (14.9)1 8000 3.1 
--- --- 12000 4.5 
--- --- 16000 8.8 
--- --- 17816 20.4 (---)1 

1:  Value in bold in parentheses is manual measurement. If dashes are present rut was too deep to measure. 
Test Temperature: 64 C Tire Pressure: 862 kPa Wheel Load: 178.6 kg 

 
 
 
 

  
         a) Data Replicate 1  

   

      b)  Photo Replicate 1  

 
Figure A.28 PURWheel Wet Test Results for Mixture 12.5-15/CM-2 
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Table A.29 PURWheel Dry Test Results for Mixture 12.5-15/CM-3 
 

Replicate 1 (Air Voids 6.8%) Replicate 2 (Air Voids 7.1%) 
Left Specimen (mm) Right Specimen (mm) Left Specimen (mm) Right Specimen (mm) 
Pass Adj. Rut Pass Adj. Rut Pass Adj. Rut Pass Adj. Rut 
250 1.1 250 0.4 250 0.6 250 0.7 
500 1.8 500 0.8 500 1.2 500 1.3 
1000 2.5 1000 1.2 1000 1.9 1000 1.8 
2000 3.3 2000 1.5 2000 2.7 2000 2.3 
4000 4.0 4000 1.9 4000 3.1 4000 3.0 
8000 5.1 8000 2.5 8000 4.3 8000 3.8 
12000 5.8 12000 2.9 12000 5.1 12000 4.5 
16000 6.5 16000 3.1 16000 5.9 16000 5.3 
20000 7.0 (5.8)1 20000 3.7 (5.1)1 20000 6.7 (4.6)1 20000 6.1 (9.8)1 

1:  Value in bold in parentheses is manual measurement. If dashes are present rut was too deep to measure. 
Test Temperature: 64 C Tire Pressure: 862 kPa Wheel Load: 178.6 kg 

 
 
 
 

 
       a)  Data Replicate 1    b)  Data Replicate 2 

                 

     c)  Photo Replicate 1    d)  Photo Replicate 2 

 
Figure A.29 PURWheel Dry Test Results for Mixture 12.5-15/CM-3 
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Table A.30 PURWheel Wet Test Results for Mixture 12.5-15/CM-3 
 

Replicate 1 (Air Voids 6.4%) Replicate 2 (Air Voids 6.2%) 
Left Specimen (mm) Right Specimen (mm) Left Specimen (mm) Right Specimen (mm) 
Pass Adj. Rut Pass Adj. Rut Pass Adj. Rut Pass Adj. Rut 
250 1.1 250 0.6 250 1.5 250 0.8 
500 2.2 500 1.2 500 2.7 500 1.3 
1000 2.8 1000 1.5 1000 4.0 1000 1.8 
2000 4.1 2000 1.9 2000 5.8 2000 2.2 
4000 5.4 4000 2.4 4000 10.3 4000 3.1 
8000 8.5 8000 3.0 6594 21.6 (14.5)1 8000 4.3 
10992 23.5 (---)1 12000 3.4 --- --- 12000 6.4 
--- --- 16000 3.7 --- --- 15976 21.3 (---)1 
--- --- 20000 4.0 (5.7)1 --- --- --- --- 

1:  Value in bold in parentheses is manual measurement. If dashes are present rut was too deep to measure. 
Test Temperature: 64 C Tire Pressure: 862 kPa Wheel Load: 178.6 kg 

 
 
 
 

 
    a)  Data Replicate 1    b)  Data Replicate 2 

          

     c)  Photo Replicate 1    d)  Photo Replicate 2 

 
Figure A.30 PURWheel Wet Test Results for Mixture 12.5-15/CM-3 
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Table A.31 PURWheel Wet Test Results for Mixture 12.5-15/CM-3 
 

Replicate 3 (Air Voids 7.8%) 
Left Specimen (mm) Right Specimen (mm) 
Pass Adj. Rut Pass Adj. Rut 
250 1.4 250 0.7 
500 2.1 500 1.3 
1000 3.1 1000 1.8 
2000 4.5 2000 2.1 
4000 6.3 4000 2.6 
8000 10.6 8000 3.3 
10474 28.1 (---)1 12000 4.6 
--- --- 16000 5.1 
--- --- 20000 6.1 (9.5)1 

1:  Value in bold in parentheses is manual measurement. If dashes are present rut was too deep to measure. 
Test Temperature: 64 C Tire Pressure: 862 kPa Wheel Load: 178.6 kg 

 
 
 
 

   
    a)  Replicate 3  

       

      b)  Photo Replicate 1  

 
Figure A.31 PURWheel Wet Test Results for Mixture 12.5-15/CM-3 
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Table A.32 PURWheel Dry Test Results for Mixture 19.0-15/CM-4 
 

Replicate 1 (Air Voids 6.3%) Replicate 2 (Air Voids 6.8%) 
Left Specimen (mm) Right Specimen (mm) Left Specimen (mm) Right Specimen (mm) 
Pass Adj. Rut Pass Adj. Rut Pass Adj. Rut Pass Adj. Rut 
250 0.9 250 1.0 250 0.8 250 0.6 
500 1.6 500 1.8 500 1.5 500 1.0 
1000 2.5 1000 2.4 1000 2.2 1000 1.4 
2000 3.7 2000 3.2 2000 2.9 2000 2.1 
4000 5.2 4000 4.1 4000 3.9 4000 2.8 
8000 7.1 8000 5.1 8000 5.3 8000 3.6 
12000 8.6 12000 5.9 12000 6.3 12000 4.3 
16000 10.0 16000 6.5 16000 7.1 16000 4.8 
20000 11.6 (14.3)1 20000 7.0 (7.4)1 20000 7.8 (7.2)1 20000 5.3 (6.9)1 

1:  Value in bold in parentheses is manual measurement. If dashes are present rut was too deep to measure. 
Test Temperature: 64 C Tire Pressure: 862 kPa Wheel Load: 178.6 kg 

 
 
 
 

 
     a)  Data Replicate 1    b)  Data Replicate 2 

             

     c)  Photo Replicate 1    d)  Photo Replicate 2 

 
Figure A.32 PURWheel Dry Test Results for Mixture 19.0-15/CM-4 
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Table A.33 PURWheel Wet Test Results for Mixture 19.0-15/CM-4 
 

Replicate 1 (Air Voids 9.4%) Replicate 2 (Air Voids 5.1%) 
Left Specimen (mm) Right Specimen (mm) Left Specimen (mm) Right Specimen (mm) 
Pass Adj. Rut Pass Adj. Rut Pass Adj. Rut Pass Adj. Rut 
250 1.4 250 1.2 250 0.9 250 0.9 
500 2.5 500 2.4 500 1.6 500 2.0 
1000 4.3 1000 3.9 1000 2.5 1000 3.3 
2000 7.0 2000 6.6 2000 3.7 2000 4.7 
4000 13.1 4000 12.2 4000 5.7 4000 6.8 
5920 21.5 (18.9)1 6854 20.5 (18.2)1 8000 8.2 8000 10.6 
--- --- --- --- 12000 10.2 12000 15.6 
--- --- --- --- 16000 12.0 13426 23.0 (26.3)1 
--- --- --- --- 20000 13.1 (13.3)1 --- --- 

1:  Value in bold in parentheses is manual measurement. If dashes are present rut was too deep to measure. 
Test Temperature: 64 C Tire Pressure: 862 kPa Wheel Load: 178.6 kg 

 
 
 
 

 
       a)  Data Replicate 1    b)  Data Replicate 2 

                

     c)  Photo Replicate 1    d)  Photo Replicate 2 

 
Figure A.33 PURWheel Wet Test Results for Mixture 19.0-15/CM-4 
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Table A.34 PURWheel Dry Test Results for Mixture 12.5-50/RM-1 
 

Replicate 1 (Air Voids 7.6%) Replicate 2 (Air Voids 5.8%) 
Left Specimen (mm) Right Specimen (mm) Left Specimen (mm) Right Specimen (mm) 
Pass Adj. Rut Pass Adj. Rut Pass Adj. Rut Pass Adj. Rut 
250 1.0 250 0.7 250 1.0 250 0.7 
500 2.1 500 1.2 500 1.6 500 1.2 
1000 3.2 1000 1.6 1000 2.2 1000 1.8 
2000 4.1 2000 2.2 2000 2.9 2000 2.5 
4000 5.5 4000 2.9 4000 4.2 4000 3.2 
8000 7.2 8000 3.8 8000 5.7 8000 4.4 
12000 8.7 12000 4.5 12000 6.9 12000 5.2 
16000 10.3 16000 5.1 16000 8.2 16000 5.8 
20000 12.0 (13.1)1 20000 5.7 (7.3)1 20000 9.1 (9.2)1 20000 6.3 (7.2)1 

1:  Value in bold in parentheses is manual measurement. If dashes are present rut was too deep to measure. 
Test Temperature: 64 C Tire Pressure: 862 kPa Wheel Load: 178.6 kg 

 
 
 
 

  
        a)  Data Replicate 1    b)  Data Replicate 2 

           

     c)  Photo Replicate 1    d)  Photo Replicate 2 

 
Figure A.34 PURWheel Dry Test Results for Mixture 12.5-50/RM-1 
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Table A.35 PURWheel Wet Test Results for Mixture 12.5-50/RM-1 
 

Replicate 1 (Air Voids 11.1%) Replicate 2 (Air Voids 7.0%) 
Left Specimen (mm) Right Specimen (mm) Left Specimen (mm) Right Specimen (mm) 
Pass Adj. Rut Pass Adj. Rut Pass Adj. Rut Pass Adj. Rut 
250 1.3 250 1.8 250 0.2 250 0.1 
500 2.4 500 3.1 500 0.4 500 0.1 
1000 3.8 1000 4.7 1000 0.7 1000 0.3 
2000 5.8 2000 7.3 2000 1.3 2000 0.7 
4000 9.8 4000 15.6 4000 3.0 4000 1.2 
6956 21.4 (20.4)1 4370 19.2 (16.2)1 8000 8.2 8000 1.7 
---  ---  11608 19.8 (---)1 12000 2.7 
---  ---  --- --- 16000 4.3 
---  ---  --- --- 20000 7.2 (13.1)1 

1:  Value in bold in parentheses is manual measurement. If dashes are present rut was too deep to measure. 
Test Temperature: 64 C Tire Pressure: 862 kPa Wheel Load: 178.6 kg 

 
 
 
 

 
      a)  Data Replicate 1    b)  Data Replicate 2 
 

                

     c)  Photo Replicate 1    d)  Photo Replicate 2 

 
Figure A.35 PURWheel Wet Test Results for Mixture 12.5-50/RM-1 
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Table A.36 PURWheel Dry Test Results for Mixture 12.5-50/RM-2 
 

Replicate 1 (Air Voids 4.3%) Replicate 2 (Air Voids 9.5%) 
Left Specimen (mm) Right Specimen (mm) Left Specimen (mm) Right Specimen (mm) 
Pass Adj. Rut Pass Adj. Rut Pass Adj. Rut Pass Adj. Rut 
250 1.1 250 1.0 250 0.6 250 0.7 
500 1.6 500 1.7 500 1.2 500 1.3 
1000 2.1 1000 2.0 1000 1.7 1000 1.9 
2000 2.7 2000 2.9 2000 2.2 2000 2.2 
4000 3.5 4000 4.2 4000 3.0 4000 3.0 
8000 4.1 8000 5.4 8000 4.1 8000 4.0 
12000 4.7 12000 6.1 12000 4.8 12000 4.7 
16000 5.1 16000 6.7 16000 5.5 16000 5.4 
20000 6.5 (6.8)1 20000 7.3 (7.4)1 20000 5.9 (7.2)1 20000 5.9 (6.3)1 

1:  Value in bold in parentheses is manual measurement. If dashes are present rut was too deep to measure. 
Test Temperature: 64 C Tire Pressure: 862 kPa Wheel Load: 178.6 kg 

 
 
 
 

 
        a)  Data Replicate 1    b)  Data Replicate 2 

                  

     c)  Photo Replicate 1    d)  Photo Replicate 2 

 
Figure A.36 PURWheel Dry Test Results for Mixture 12.5-50/RM-2 
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Table A.37 PURWheel Wet Test Results for Mixture 12.5-50/RM-2 
 

Replicate 1 (Air Voids 11.1%) Replicate 2 (Air Voids 6.5%) 
Left Specimen (mm) Right Specimen (mm) Left Specimen (mm) Right Specimen (mm) 
Pass Adj. Rut Pass Adj. Rut Pass Adj. Rut Pass Adj. Rut 
250 1.2 250 1.0 250 0.8 250 0.6 
500 2.7 500 2.0 500 0.9 500 1.2 
1000 4.9 1000 3.2 1000 1.0 1000 1.8 
2000 8.2 2000 4.9 2000 1.3 2000 2.7 
4000 18.7 4000 8.7 4000 1.9 4000 4.0 
4318 26.1 (---)1 6454 19.1 (21.8)1 8000 3.9 8000 7.0 
--- --- --- --- 12000 8.4 12000 9.6 
--- --- --- --- 16000 15.9 16000 11.6 
--- --- --- --- 17960 24.4 (26.5)1 20000 13.8 (14.0)1 

1:  Value in bold in parentheses is manual measurement. If dashes are present rut was too deep to measure. 
Test Temperature: 64 C Tire Pressure: 862 kPa Wheel Load: 178.6 kg 

 
 
 
 

 
         a)  Data Replicate 1    b)  Data Replicate 2 

             

     c)  Photo Replicate 1    d)  Photo Replicate 2 

 
Figure A.37 PURWheel Wet Test Results for Mixture 12.5-50/RM-2 
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Table A.38 PURWheel Dry Test Results for Mixture 12.5-75/RM-1 
 

Replicate 1 (Air Voids 9.5%) Replicate 2 (Air Voids 11.8%) 
Left Specimen (mm) Right Specimen (mm) Left Specimen (mm) Right Specimen (mm) 
Pass Adj. Rut Pass Adj. Rut Pass Adj. Rut Pass Adj. Rut 
250 0.6 250 0.8 250 0.9 250 1.2 
500 1.2 500 1.4 500 1.6 500 2.1 
1000 1.7 1000 2.2 1000 2.3 1000 3.0 
2000 2.4 2000 3.1 2000 3.3 2000 4.1 
4000 3.3 4000 4.4 4000 4.7 4000 6.0 
8000 4.8 8000 6.3 8000 6.4 8000 9.0 
12000 6.2 12000 8.1 12000 8.0 12000 11.8 
16000 7.2 16000 9.4 16000 9.5 16000 14.6 
20000 8.1 (9.2)1 20000 10.4 (10.9)1 20000 10.5 (9.2)1 20000 17.6 (15.7)1 

1:  Value in bold in parentheses is manual measurement. If dashes are present rut was too deep to measure. 
Test Temperature: 64 C Tire Pressure: 862 kPa Wheel Load: 178.6 kg 

 
 
 
 

 
      a)  Data Replicate 1    b)  Data Replicate 2 

                

     c)  Photo Replicate 1    d)  Photo Replicate 2 

 
Figure A.38 PURWheel Dry Test Results for Mixture 12.5-75/RM-1 
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Table A.39 PURWheel Wet Test Results for Mixture 12.5-75/RM-1 
 

Replicate 1 (Air Voids 10.9%) Replicate 2 (Air Voids 10.0%) 
Left Specimen (mm) Right Specimen (mm) Left Specimen (mm) Right Specimen (mm) 
Pass Adj. Rut Pass Adj. Rut Pass Adj. Rut Pass Adj. Rut 
250 1.1 250 1.4 250 0.5 250 0.7 
500 1.7 500 2.8 500 1.1 500 1.0 
1000 2.4 1000 4.5 1000 1.8 1000 1.3 
2000 3.3 2000 7.0 2000 2.5 2000 1.7 
4000 4.8 4000 11.3 4000 3.5 4000 2.2 
8000 7.3 7848 22.4 (20.4)1 8000 5.4 8000 3.0 
12000 9.8 --- --- 12000 7.3 12000 3.7 
16000 13.2 --- --- 16000 13.8 16000 4.2 
20000 19.5 (15.5)1 --- --- 18098 24.1 (21.3)1 20000 4.6 (5.0)1 

1:  Value in bold in parentheses is manual measurement. If dashes are present rut was too deep to measure. 
Test Temperature: 64 C Tire Pressure: 862 kPa Wheel Load: 178.6 kg 

 
 
 
 

 
       a)  Data Replicate 1    b)  Data Replicate 2 

               
     c)  Photo Replicate 1    d)  Photo Replicate 2 

 
Figure A.39 PURWheel Wet Test Results for Mixture 12.5-75/RM-1 
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Table A.40 PURWheel Dry Test Results for Mixture 12.5-75/RM-2 
 

Replicate 1 (Air Voids 8.1%) Replicate 2 (Air Voids 9.1%) 
Left Specimen (mm) Right Specimen (mm) Left Specimen (mm) Right Specimen (mm) 
Pass Adj. Rut Pass Adj. Rut Pass Adj. Rut Pass Adj. Rut 
250 0.6 250 0.6 250 0.5 250 0.6 
500 1.0 500 1.0 500 1.0 500 1.1 
1000 1.3 1000 1.4 1000 1.4 1000 1.5 
2000 1.7 2000 1.9 2000 2.0 2000 2.1 
4000 2.3 4000 2.4 4000 2.9 4000 2.9 
8000 3.1 8000 3.3 8000 3.8 8000 4.0 
12000 3.7 12000 3.9 12000 4.6 12000 4.8 
16000 4.0 16000 4.4 16000 5.3 16000 5.5 
20000 4.3 (4.8)1 20000 4.9 (6.0)1 20000 5.8 (7.0)1 20000 6.1 (6.2)1 

1:  Value in bold in parentheses is manual measurement. If dashes are present rut was too deep to measure. 
Test Temperature: 64 C Tire Pressure: 862 kPa Wheel Load: 178.6 kg 

 
 
 
 

 

      a)  Data Replicate 1    b)  Data Replicate 2 

            
     c)  Photo Replicate 1    d)  Photo Replicate 2 

 
Figure A.40 PURWheel Dry Test Results for Mixture 12.5-75/RM-2 
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Table A.41 PURWheel Wet Test Results for Mixture 12.5-75/RM-2 
 

Replicate 1 (Air Voids 7.6%) Replicate 2 (Air Voids 6.6%) 
Left Specimen (mm) Right Specimen (mm) Left Specimen (mm) Right Specimen (mm) 
Pass Adj. Rut Pass Adj. Rut Pass Adj. Rut Pass Adj. Rut 
250 0.4 250 0.6 250 0.5 250 0.6 
500 0.9 500 1.1 500 0.9 500 1.2 
1000 1.4 1000 1.6 1000 1.2 1000 1.6 
2000 2.1 2000 2.3 2000 2.0 2000 2.2 
4000 3.3 4000 3.4 4000 2.5 4000 2.7 
8000 5.5 8000 5.3 8000 2.7 8000 3.4 
12000 9.0 12000 8.2 12000 3.1 12000 3.9 
16000 21.0 16000 15.3 16000 3.3 16000 4.5 
16248 22.5 (---)1 17940 21.6 (17.7)1 20000 3.6 (3.5)1 20000 4.4 (5.9)1 

1:  Value in bold in parentheses is manual measurement. If dashes are present rut was too deep to measure. 
Test Temperature: 64 C Tire Pressure: 862 kPa Wheel Load: 178.6 kg 

 
 
 
 

 
       a)  Data Replicate 1    b)  Data Replicate 2 

               

     c)  Photo Replicate 1    d)  Photo Replicate 2 

 
Figure A.41 PURWheel Wet Test Results for Mixture 12.5-75/RM-2 
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